P是矩形ABCD所在平面外一點(diǎn),且PA⊥平面ABCD,那么以PA、B、CD五個(gè)點(diǎn)中的三個(gè)點(diǎn)為頂點(diǎn)的直角三角形的個(gè)數(shù)是_____________個(gè).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四棱錐P-ABCD的底面是矩形,PA⊥平面ABCD,AD=2,AB=1,E,F(xiàn)分別是線段AB.BC的中點(diǎn).
(Ⅰ)證明:PF⊥FD;
(Ⅱ)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值;
(Ⅲ)在棱PA上是否存在點(diǎn)G,使得EG∥平面PFD?若存在,請(qǐng)找出點(diǎn)G的位置并加以說(shuō)明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•自貢一模)如圖,四棱錐P-ABCD的底ABCD是矩形,PA⊥平面ABCD,AD=2,AB=1,E,F(xiàn)分別是AB,BC的中點(diǎn)N在軸上.
(I)求證:PF⊥FD;
(II)在PA上找一點(diǎn)G,使得EG∥平面PFD;
(III)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•即墨市模擬)已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2a,AB=a,PA⊥平米ABCD,F(xiàn)是線段BC的中點(diǎn).H為PD中點(diǎn).
(1)證明:FH∥面PAB;
(2)證明:PF⊥FD;
(3)若PB與平米ABCD所成的角為45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點(diǎn).
(1)證明:PF⊥FD;
(2)判斷并說(shuō)明PA上是否存在點(diǎn)G,使得EG∥平面PFD;
(3)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•豐臺(tái)區(qū)二模)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=1,點(diǎn)P在棱DF上.
(Ⅰ)若P是DF的中點(diǎn),
(ⅰ) 求證:BF∥平面ACP;
(ⅱ) 求異面直線BE與CP所成角的余弦值;
(Ⅱ)若二面角D-AP-C的余弦值為
6
3
,求PF的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案