【題目】函數(shù)f(x)=-2sin2xsin 2x1,給出下列四個命題:

①在區(qū)間上是減函數(shù);

②直線是函數(shù)圖象的一條對稱軸;

③函數(shù)f(x)的圖象可由函數(shù)的圖象向左平移而得到;

④若,則f(x)的值域是

其中正確命題序號是________

【答案】①②.

【解析】

先利用三角恒等變形可得f(x),再結(jié)合三角函數(shù)的單調(diào)區(qū)間、對稱軸方程及值域的求法及三角函數(shù)圖像的平移變換逐一判斷即可得解.

解:由f(x)=-2sin2xsin 2x1=,

對于①,令,解得,

即函數(shù)的減區(qū)間為,顯然函數(shù)在區(qū)間上是減函數(shù),即①正確,

對于②,令,則,即函數(shù)的對稱軸方程為,顯然直線是函數(shù)圖象的一條對稱軸,即②正確;

對于③,將函數(shù)的圖象向左平移可得,顯然不滿足題意,即③錯誤;

對于④,當(dāng),則,則,即④錯誤,

綜上可知:正確命題序號是①②.

故答案為:①②.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠推出品牌為玉兔的新產(chǎn)品,生產(chǎn)玉兔的固定成本為20000元,每生產(chǎn)一件玉兔需要增加投入100元,根據(jù)統(tǒng)計數(shù)據(jù),總收益P(單位:元)與月產(chǎn)量x(單位:件)滿足(注:總收益=總成本+利潤)

1)請將利潤y(單位:元)表示成關(guān)于月產(chǎn)量x(單位:件)的函數(shù);

2)當(dāng)月產(chǎn)量為多少時,利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列關(guān)于回歸分析與獨立性檢驗的說法正確的是()

A.回歸分析和獨立性檢驗沒有什么區(qū)別;

B.回歸分析是對兩個變量準(zhǔn)確關(guān)系的分析,而獨立性檢驗是分析兩個變量之間的不確定性關(guān)系;

C.獨立性檢驗可以確定兩個變量之間是否具有某種關(guān)系.

D.回歸分析研究兩個變量之間的相關(guān)關(guān)系,獨立性檢驗是對兩個變量是否具有某種關(guān)系的一種檢驗;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中無理數(shù).

(Ⅰ)若函數(shù)有兩個極值點,的取值范圍

(Ⅱ)若函數(shù)的極值點有三個,最小的記為,最大的記為,的最大值為的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某縣共有90間農(nóng)村淘寶服務(wù)站,隨機抽取5間,統(tǒng)計元旦期間的網(wǎng)購金額(單位萬元)的莖葉圖如圖所示,其中莖為十位數(shù)葉為個位數(shù)

(1)根據(jù)莖葉圖計算樣本均值;

(2)若網(wǎng)購金額(單位萬元)不小于18的服務(wù)站定義為優(yōu)秀服務(wù)站,其余為非優(yōu)秀服務(wù)站.根據(jù)莖葉圖推斷90間服務(wù)站中有幾間優(yōu)秀服務(wù)站?

(3)從隨機抽取的5間服務(wù)站中再任取2間作網(wǎng)購商品的調(diào)查,求恰有1間是優(yōu)秀服務(wù)站的概率

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下圖給出的2000年至2016年我國實際利用外資情況,以下結(jié)論正確的是

A. 2000年以來我國實際利用外資規(guī)模與年份負(fù)相關(guān)

B. 2010年以來我國實際利用外資規(guī)模逐年增加

C. 2008年我國實際利用外資同比增速最大

D. 2010年以來我國實際利用外資同比增速最大

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域是(0,+∞),且對任意正實數(shù)x,y都有f(xy)=f(x)+f(y)恒成立,已知f(2)=1,且x>1時,f(x)>0.

(1)求f()的值;

(2)判斷y=f(x)在(0,+∞)上的單調(diào)性并給出證明;

(3)解不等式f(2x)>f(8x-6)-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中.

1)當(dāng)時,求的單調(diào)區(qū)間;

2)若存在,使得不等式成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-5:不等式選講

設(shè)函數(shù)

(1)證明:;

(2)若不等式的解集是非空集,求的范圍.

查看答案和解析>>

同步練習(xí)冊答案