如圖,已知△BCD中,∠BCD=90°,AB⊥平面BCD,BC=CD=1,數(shù)學公式分別為AC、AD的中點.
(1)求證:平面BEF⊥平面ABC;
(2)求直線AD與平面BEF所成角的正弦值.

解:(1)證明:∵AB⊥平面BCD,
∴AB⊥CD.
又∵CD⊥BC,
∴CD⊥平面ABC.
∵E、F分別為AC、AD的中點,
∴EF∥CD.
∴EF⊥平面ABC,
∵EF?平面BEF,
∴平面BEF⊥平面ABC.
(2)過A作AH⊥BE于H,連接HF,
由(1)可得AH⊥平面BEF,
∴∠AFH為直線AD與平面BEF所成角.
在Rt△ABC中,為AC中點,
∴∠ABE=30°,

在Rt△BCD中,BC=CD=1,

∴在Rt△ABD中,

∴在Rt△AFH中,,
∴AD與平面BEF所成角的正弦值為
分析:(1)通過證明CD⊥平面ABC,CD∥EF,說明EF?平面BEF,即可證明平面BEF⊥平面ABC;
(2)過A作AH⊥BE于H,連接HF,可得AH⊥平面BEF,推出∠AFH為直線AD與平面BEF所成角.在Rt△AFH中,求直線AD與平面BEF所成角的正弦值.
點評:證明兩個平面垂直,關鍵在一個面內(nèi)找到一條直線和另一個平面垂直;利用三垂線定理找出二面角的平面角,解三角形求出此角,是常用方法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△BCD中,∠BCD=90°,AB⊥平面BCD,BC=2,CD=
3
,AB=
3
,E、F
分別為AC、AD上的動點.
(1)若
AE
EC
=
AF
FD
,求證:平面BEF⊥平面ABC;
(2)若
AE
EC
=1
,
AF
FD
=2
,求平面BEF與平面BCD所成的銳二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△BCD中,∠BCD=90°,AB⊥平面BCD,BC=CD=1,AB=
3
,E、F
分別為AC、AD的中點.
(1)求證:平面BEF⊥平面ABC;
(2)求直線AD與平面BEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點,且
AE
AC
=
AF
AD
(0<λ<1).若平面BEF⊥平面ACD,則λ的值為
6
7
6
7

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省吉安市安福中學高二(上)期中數(shù)學試卷(理科)(解析版) 題型:填空題

如圖,已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點,且(0<λ<1).若平面BEF⊥平面ACD,則λ的值為   

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省吉安市安福中學高二(上)期中數(shù)學試卷(理科)(解析版) 題型:填空題

如圖,已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分別是AC、AD上的動點,且(0<λ<1).若平面BEF⊥平面ACD,則λ的值為   

查看答案和解析>>

同步練習冊答案