.已知橢圓的左、右焦點分別是F1(-c,0)、F2(c,0),Q是橢圓外的動點,滿足點P是線段F1Q與該橢圓的交點,點T在線段F2Q上,并且滿足
(Ⅰ)設(shè)為點P的橫坐標,證明;
(Ⅱ)求點T的軌跡C的方程;
(Ⅲ)試問:在點T的軌跡C上,是否存在點M,使△F1M的面積S=若存在,求∠F1MF2的正切值;若不存在,請說明理由.
(Ⅰ)見解析; (Ⅱ) (Ⅲ)
【解析】(I) 設(shè)點P的坐標為(x,y),由P(x,y)在橢圓上,
得
然后再根據(jù)知,因而
(II)本小題應(yīng)先討論時,點(,0)和點(-,0)在軌跡上.
然后再根據(jù)當且時,由,得.
又,所以T為線段F2Q的中點.所以可得,從而說明點T的軌跡方程為以O(shè)為圓心半徑為a的圓.
(III)先假設(shè)在C上存在點M()使S=的充要條件是
然后可得,由④得所以可得當時,存在點M,使S=.然后再對坐標化進一步推導即可.
(Ⅰ)設(shè)點P的坐標為(x,y),由P(x,y)在橢圓上,得
又由知,
所以
(Ⅱ) 當時,點(,0)和點(-,0)在軌跡上.
當且時,由,得.
又,所以T為線段F2Q的中點.
在△QF1F2中,,所以有
綜上所述,點T的軌跡C的方程是
(Ⅲ) C上存在點M()使S=的充要條件是
由③得,由④得 所以,當時,存在點M,使S=;
當時,不存在滿足條件的點M.
當時,,
由,
,
,得
科目:高中數(shù)學 來源: 題型:
y2 |
a2 |
y2 |
b2 |
| ||
2 |
PA |
AB |
查看答案和解析>>
科目:高中數(shù)學 來源:廣東省揭陽市2007年高中畢業(yè)班第一次高考模擬考試題(理科) 題型:044
如圖,在直角坐標系xOy中,已知橢圓的離心率e=,左右兩個焦分別為F1、F2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左頂點為A,下頂點為B,動點P滿足,()試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓C上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的
直線與橢圓相交M、N兩點,且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)橢圓的左頂點為A,下頂點為B,動點P滿足,
()試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的
直線與橢圓相交M、N兩點,且|MN|=1.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 設(shè)橢圓的左頂點為A,下頂點為B,動點P滿足,
()試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓上.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年貴州省高三第一次月考文科數(shù)學 題型:解答題
(本小題滿分12分)已知橢圓的方程為 ,雙曲線的左、右焦
點分別是的左、右頂點,而的左、右頂點分別是的左、右焦點.
(1)求雙曲線的方程;
(2)若直線與雙曲線C2恒有兩個不同的交點A和B,求的范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com