分析 設(shè)公差d不為零的等差數(shù)列{an},運用等比數(shù)列的中項性質(zhì)和等差數(shù)列的通項公式,解方程可得d=-1,再由等差數(shù)列的求和公式,結(jié)合二次函數(shù)最值的求法,注意n為正整數(shù),即可得到最大值.
解答 解:設(shè)公差d不為零的等差數(shù)列{an},
由a1=8,且a1、a5、a7成等比數(shù)列,
可得a52=a1a7,
即(8+4d)2=8(8+6d),
解得d=-1(0舍去),
則Sn=na1+$\frac{1}{2}$n(n-1)d=8n-$\frac{1}{2}$n(n-1)
=-$\frac{1}{2}$(n-$\frac{17}{2}$)2+$\frac{289}{8}$,
由于n為正整數(shù),可知n=8或9,
則Sn最大,且為36.
故答案為:36.
點評 本題考查等差數(shù)列的通項公式和求和公式,以及等比數(shù)列的中項的性質(zhì),考查二次函數(shù)思想的運用:求最值,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=1,g(x)=x0 | B. | f(x)=x-1,g(x)=$\frac{x^2}{x}$-1 | ||
C. | f (x)=x2,g(x)=($\sqrt{x}$)4 | D. | f(x)=|x|,g(x)=$\sqrt{x^2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com