【題目】如圖在棱錐中,為矩形,

(1)在上是否存在一點,使,若存在確定點位置,若不存在,請說明理由;

(2)當(dāng)中點時,求二面角的余弦值.

【答案】(1)見解析;(2)

【解析】

1)要證明PC⊥面ADE由已知可得ADPC,只需滿足即可,從而得到E為中點;2求出ADE的法向量,面PAE的法向量,利用空間向量的數(shù)量積,求解二面角PAED的余弦值.

(1)法一:要證明PC⊥面ADE,易知AD⊥面PDC,即得AD⊥PC,故只需即可,

所以由,即存在點E為PC中點.

法二:建立如圖所示的空間直角坐標(biāo)系D-XYZ, 由題意知PD=CD=1,

,設(shè), ,,由

,得

即存在點E為PC中點.

(2)由(1)知,,

,,

設(shè)面ADE的法向量為,面PAE的法向量為

由的法向量為得,

同理求得

所以,

故所求二面角P-AE-D的余弦值為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班進(jìn)行了次數(shù)學(xué)測試,其中甲、乙兩人的成績統(tǒng)計情況如莖葉圖所示:

(I)該班數(shù)學(xué)老師決定從甲、乙兩人中選派一人去參加數(shù)學(xué)比賽,你認(rèn)為誰去更合適?并說明理由;

(II)從甲的成績中人去兩次作進(jìn)一步的分析,在抽取的兩次成績中,求至少有一次成績在之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

討論函數(shù)的單調(diào)性;

設(shè),對任意的恒成立,求整數(shù)的最大值;

求證:當(dāng)時,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了調(diào)查高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時間之間的相關(guān)關(guān)系,新苗中學(xué)數(shù)學(xué)教師對新入學(xué)的名學(xué)生進(jìn)行了跟蹤調(diào)查,其中每周自主做數(shù)學(xué)題的時間不少于小時的有人,余下的人中,在高三模擬考試中數(shù)學(xué)成績不足分的占,統(tǒng)計成績后,得到如下的列聯(lián)表:

分?jǐn)?shù)大于等于

分?jǐn)?shù)不足

合計

周做題時間不少于小時

4

19

周做題時間不足小時

合計

45

)請完成上面的列聯(lián)表,并判斷能否在犯錯誤的概率不超過的前提下認(rèn)為“高中生的數(shù)學(xué)成績與學(xué)生自主學(xué)習(xí)時間有關(guān)”.

)(i)按照分層抽樣的方法,在上述樣本中,從分?jǐn)?shù)大于等于分和分?jǐn)?shù)不足分的兩組學(xué)生中抽取名學(xué)生,設(shè)抽到的不足分且周做題時間不足小時的人數(shù)為,求的分布列(概率用組合數(shù)算式表示).

(ii)若將頻率視為概率,從全校大于等于分的學(xué)生中隨機(jī)抽取人,求這些人中周做題時間不少于小時的人數(shù)的期望和方差.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在原點處的切線相同。

(1)求的值;

(2)求的單調(diào)區(qū)間和極值;

(3)若時,,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是由容量為100的樣本得到的頻率分布直方圖.其中前4組的頻率成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為a,在之間的數(shù)據(jù)個數(shù)為b,則a,b的值分別為(

A.78

B.,83

C.,78

D.,83

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,已知直線的參數(shù)方程是 (m>0,t為參數(shù)),曲線的極坐標(biāo)方程為

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線軸交于點,與曲線交于點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在等腰梯形ABCD中,,E,FAB的三等分點,且分別沿DE、CF折起到A、B兩點重合,記為點P

證明:平面平面PEF;

,求PD與平面PFC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】新車嗨翻天!首付3000元起開新車這就是毛豆新車網(wǎng)打出來的廣告語.某人看到廣告,興奮不已,計劃于20191月在該網(wǎng)站購買一輛某品牌汽車,他從當(dāng)?shù)亓私獾浇鍌月該品牌汽車實際銷量如表:

月份

2018.08

2018.09

2018.10

2018.11

2018.12

月份編號t

1

2

3

4

5

銷量y(萬輛)

0.5

0.6

1

1.4

1.7

1)經(jīng)分析,可用線性回歸模型擬合當(dāng)?shù)卦撈放破噷嶋H銷量y(萬輛)與月份編號t之間的相關(guān)關(guān)系.請用最小二乘法求y關(guān)于t的線性回歸方程,并估計20191月份該品牌汽車的銷量:

2)為了增加銷量,廠家和毛豆新車網(wǎng)聯(lián)合推出對購該品牌車進(jìn)行補(bǔ)貼.已知某地擬購買該品牌汽車的消費(fèi)群體十分龐大,某調(diào)研機(jī)構(gòu)對其中的200名消費(fèi)者的購車補(bǔ)貼金額的心理預(yù)期值進(jìn)行了一個抽樣調(diào)查,得到如下一份頻數(shù)表:

補(bǔ)貼金額預(yù)期值

區(qū)間(萬元)

[12

[2,3

[3,4

[45

[5,6

[6,7

頻數(shù)

20

60

60

30

20

10

將頻率視為概率,現(xiàn)用隨機(jī)抽樣方法從該地區(qū)擬購買該品牌汽車的所有消費(fèi)者中隨機(jī)抽取3人,記被抽取3人中對補(bǔ)貼金額的心理預(yù)期值不低于3萬元的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望Eξ

參考公式及數(shù)據(jù):①回歸方程,其中,;②

查看答案和解析>>

同步練習(xí)冊答案