若f(x)=x2+6,x∈[-1,2],則f(x)是( 。
A、奇函數(shù)
B、偶函數(shù)
C、既是奇函數(shù),又是偶函數(shù)
D、非奇非偶函數(shù)
考點(diǎn):函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱,故此函數(shù)是非奇非偶函數(shù).
解答: 解:由于函數(shù)f(x)=x2+6,x∈[-1,2],它的定義域不關(guān)于原點(diǎn)對(duì)稱,故此函數(shù)是非奇非偶函數(shù),
故選D.
點(diǎn)評(píng):本題主要考查函數(shù)的奇偶性的判斷方程法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)是奇函數(shù)且滿足f(
3
2
-x)=f(x)
,f(-2)=-3,數(shù)列{an}滿足a1=-1,且
Sn
n
=2×
an
n
+1
(其中Sn為{an}的前n項(xiàng)和),則f(a5)+f(a6)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y滿足
y≥1
y≤2x-1
x+y≤m
,如果目標(biāo)函數(shù)z=x-y最小值的取值范圍為[-2,-1],則實(shí)數(shù)m的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y為正實(shí)數(shù),且x+2y=1,則
1
x
+
1
y
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

向量
OA
=(1,
1
2
),
OB
=(0,1),若動(dòng)點(diǎn)P(x,y)滿足條件:
0<
OP
OA
<1
0<
OP
OB
<1.
,則P(x,y)的變動(dòng)范圍(不含邊界的陰影部分)是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是遞增的等差數(shù)列,它的前三項(xiàng)的和為-3,前三項(xiàng)的積為8.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{|an|}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等式lg(x+y)=lgx+lgy不是對(duì)數(shù)公式,但對(duì)某些x,y仍能成立,如x=y=2.試另舉一例使等式成立.x=
 
,y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的奇函數(shù),且對(duì)任意實(shí)數(shù)x,恒有f(x+2)=-f(x),當(dāng)x∈[0,2]時(shí),f(x)=2x-x2
(1)求證:f(x)是周期函數(shù);
(2)當(dāng)x∈[2,4]時(shí),求f(x)的解析式; 
(3)計(jì)算f(0)+f(1)+f(2)+…+f(2011)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=3cos
πx
2
-log
1
2
x
零點(diǎn)個(gè)數(shù)是( 。
A、2B、3C、4D、5

查看答案和解析>>

同步練習(xí)冊(cè)答案