不等式組
5x+3y≤15
y≤x+1
x-5y≤3
表示的平面區(qū)域的面積為(  )
A、7B、5C、3D、14
考點:簡單線性規(guī)劃
專題:不等式的解法及應用
分析:先畫出滿足條件的平面區(qū)域,再求出交點的坐標,根據(jù)三角形的面積公式求出即可.
解答: 解:畫出滿足條件
5x+3y≤15
y≤x+1
x-5y≤3
表示的平面區(qū)域,
如圖示:
,
∴平面區(qū)域的面積是
1
2
×4×
7
2
=7,
故選:A.
點評:本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結合思想,是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知i是虛數(shù)單位,m和n都是實數(shù),且m(1+i)=
3
+ni,則(
m+ni
m-ni
2015=(  )
A、-1B、1C、-iD、i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E、F分別是A1A,C1D1的中點,G為正方形BCC1B1的中心,則四邊形AEFG在該正方體的各個面的投影不可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

從地面上測一建在山頂上的建筑物,測得其視角為α,同時測得建筑物頂部仰角為β,則山頂?shù)难鼋菫椋ā 。?/div>
A、α+βB、α-β
C、β-αD、α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在60°二面角的棱上有兩點A、B,線段AC、BD分別在這個二面角的兩個面內(nèi),并且都垂直于棱AB,若AB=4,AC=6,BD=8,則線段CD的長為( 。
A、
29
B、10
C、2
41
D、2
17

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=1-2sin(x+
π
8
)[sin(x+
π
8
)-cos(x+
π
8
)]
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)當x∈[-
π
2
,
π
12
],求函數(shù)f(x+
π
8
)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C的對邊分別為a,b,c,向量
m
=(a+b,sinA-sinC)
,向量
n
=(c,sinA-sinB)
,且
m
n
;
(Ⅰ)求角B的大小;
(Ⅱ)設BC中點為D,且AD=
3
;求a+2c的最大值及此時△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,BE、CF分別為鈍角△ABC的兩條高,已知AE=1,AB=3,CF=4
2
,則BC邊的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

OA
=(1,-2),
OB
=(a,-1),
OC
=(-b,0)),(a>0,b>0,O為坐標原點),若A,B,C三點共線,則a與b的關系式為
 
1
a
+
2
b
的最小值是
 

查看答案和解析>>

同步練習冊答案