13.不求值,分別比較下列各組中兩個(gè)三角函數(shù)值的大小
(1)sin$\frac{π}{7}$,sin$\frac{π}{5}$;
(2)sin1,sin2.

分析 (1)利用正弦函數(shù)的性質(zhì),即可比較大小.
(2)判斷1與2對(duì)應(yīng)的三角函數(shù)線的大小,即可得到結(jié)果.

解答 解:(1)因?yàn)?<$\frac{π}{7}$<$\frac{π}{5}$<$\frac{π}{2}$,y=sinx在(0,$\frac{π}{2}$)上是增函數(shù),
所以,sin$\frac{π}{7}$<sin$\frac{π}{5}$;
(2)sin2=sin(π-2),∵$0<1<π-2<\frac{π}{2}$,由正弦函數(shù)線可知:sin1<sin2.

點(diǎn)評(píng) 本題考查正弦函數(shù)的圖象與性質(zhì),正弦函數(shù)線的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知球內(nèi)接正三棱錐的底邊邊長(zhǎng)為3,高為4,求外接球的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某等差數(shù)列前40項(xiàng)之和為10,前16項(xiàng)之和為100,求此數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.計(jì)算:
(1)$\root{3}{{(-4)}^{3}}$-($\frac{1}{2}$)0+${0.25}^{\frac{1}{2}}$×($\frac{-1}{\sqrt{2}}$)4;
(2)${(0.064)}^{-\frac{1}{3}}$-(-$\frac{5}{9}$)0+${[(-2)^{3}]}^{-\frac{4}{3}}$+16-0.75+${(0.01)}^{\frac{1}{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.利用“五點(diǎn)法”作出下列函數(shù)的簡(jiǎn)圖,并分別說(shuō)明這些函數(shù)的圖象與正(余)弦曲線的區(qū)別和聯(lián)系:
(1)y=cosx-1;
(3)y=sin(x-$\frac{π}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)等差數(shù)列{an}前n項(xiàng)和Sn,a3+a8+a13=C,a4+a14=2C,其中C<0,則Sn在n等于7時(shí)取到最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,且F2(1,0),O為坐標(biāo)原點(diǎn),點(diǎn)M($\frac{2}{3}$,$\frac{2\sqrt{6}}{3}$)為橢圓C上的點(diǎn).
(1)求C的方程:
(2)平面上的點(diǎn)N滿足$\overrightarrow{MN}$=$\overrightarrow{M{F}_{1}}$+$\overrightarrow{M{F}_{2}}$,直線1平行于MN且與橢圓C交于A、B兩點(diǎn),若$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知p:函數(shù)f(x)=logax(a>0,a≠1)在(0,+∞)是增函數(shù),q:?x∈R,x2+ax+1<0,若p∧(¬q)為真命題,則求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知數(shù)列的通項(xiàng)公式an=-2n2+16n+5,其中最大的一項(xiàng)是第( 。╉(xiàng).
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案