如圖,四棱錐P-ABCD中,PA⊥平面ABCD,AD∥BC,PA=AB=AD=2BC=2,∠BAD=θ,E是棱PD的中點(diǎn).
(Ⅰ)若θ=60°,求證:AE⊥平面PCD;
(Ⅱ)求θ的值,使二面角P-CD-A的平面角最。
考點(diǎn):用空間向量求平面間的夾角,直線與平面垂直的判定
專題:空間位置關(guān)系與距離,空間角
分析:(Ⅰ)由已知條件推導(dǎo)CD⊥AD,PA⊥CD.從而得到CD⊥AE.由此能證明AE⊥平面PCD.
(Ⅱ)建立空間直角坐標(biāo)系A(chǔ)-xyz,利用向量法能求出要使α最小,則cosα最大,由此能求出結(jié)果.
解答: (Ⅰ)證明:當(dāng)θ=60°時(shí),
∵AD∥BC,AB=AD=2BC=2.
∴CD⊥AD.
又PA⊥平面ABCD,∴PA⊥CD.
∴CD⊥平面PAD.
又AE?平面PAD,∴CD⊥AE.
又PA=AD,E是棱PD的中點(diǎn),
∴PD⊥AE.
∵PD∩CD=D,∴AE⊥平面PCD.(7分)
(Ⅱ)解:如圖,建立空間直角坐標(biāo)系A(chǔ)-xyz,
則P(0,0,2),B(2sinθ,2cosθ,0),
C(2sinθ,2cosθ+1,0),D(0,2,0).
DP
=(0,-2,2)
DC
=(2sinθ,2cosθ-1,0)

設(shè)平面PCD的法向量為
n
=(x,y,z)

n
DP
n
DC
-2y+2z=0
(2sinθ)x+(2cosθ-1)y=0
,
取y=1,得
n
=(
2cosθ-1
2sinθ
,1,1)

又平面ABCD的法向量為
m
=(0,0,1)

設(shè)二面角P-CD-A的平面角為α,
cosα=
|
m
n
|
|
m
|•|
n
|
=
1
(
2cosθ-1
2sinθ
)
2
+2

要使α最小,則cosα最大,即
2cosθ-1
2sinθ
=0
,
cosθ=
1
2
,得θ=
π
3
.(8分)
點(diǎn)評(píng):本題考查直線與平面垂直的證明,考查使二面角最小的角θ的值的求法,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的各項(xiàng)均為正數(shù),它的前n項(xiàng)的和為Sn,點(diǎn)(an,Sn)在函數(shù)y=
1
8
x2+
1
2
x+
1
2
的圖象上;數(shù)列{bn}滿足b1=a1,bn+1(an+1-an)=bn.其中n∈N*
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=
an
bn
,求證:數(shù)列{cn}的前n項(xiàng)的和Tn
5
9
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)主要生產(chǎn)甲、乙兩種品牌的空調(diào),由于受到空調(diào)在保修期內(nèi)維修費(fèi)等因素的影響,企業(yè)生產(chǎn)每臺(tái)空調(diào)的利潤與該空調(diào)首次出現(xiàn)故障的時(shí)間有關(guān),甲、乙兩種品牌空調(diào)的保修期均為3年,現(xiàn)從該廠已售出的兩種品牌空調(diào)中各隨機(jī)抽取50臺(tái),統(tǒng)計(jì)數(shù)據(jù)如下:
品牌
首次出現(xiàn)故障時(shí)間
x年
0<x≤11<x≤22<x≤3x>30<x≤22<x≤3x>3
空調(diào)數(shù)量(臺(tái))124432345
每臺(tái)利潤(千元)122.52.71.52.62.8
將頻率視為概率,解答下列問題:
(Ⅰ)從該廠生產(chǎn)的甲品牌空調(diào)中隨機(jī)抽取一臺(tái),求首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(Ⅱ)若該廠生產(chǎn)的空調(diào)均能售出,記生產(chǎn)一臺(tái)甲品牌空調(diào)的利潤為X1,生產(chǎn)一臺(tái)乙品牌空調(diào)的利潤為X2,分別求X1,X2的分布列;
(Ⅲ)該廠預(yù)計(jì)今后這兩種品牌空調(diào)銷量相當(dāng),但由于資金限制,只能生產(chǎn)其中一種品牌空調(diào),若從經(jīng)濟(jì)效益的角度考慮,你認(rèn)為應(yīng)該生產(chǎn)哪種品牌的空調(diào)?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x),g(x)都定義在實(shí)數(shù)集R上,且滿足f(x)為奇函數(shù),g(x)為偶函數(shù),f(x)+g(x)=x2+x-2,試求函數(shù)f(x),g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,
(1)求證:AD1⊥平面CDA1B1;
(2)求直線BD與平面CDA1B1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD是菱形,PA⊥平面ABCD,PA=AB,∠ABC=60°,E、F分別是PB,CD的中點(diǎn).
(Ⅰ)證明:PB⊥面AEF
(Ⅱ)求二面角A-PE-F的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AC=BC=1,∠ACB=90°,AA1=2,M,N分別是棱CC1,AB中點(diǎn).
(1)求證:CN∥平面AMB1
(2)求C到平面AMB1上的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,側(cè)棱A1A⊥底面ABC,AB⊥BC,E是A1C的中點(diǎn),D在線段AC上,并且DE⊥A1C,已知A1A=AB=
2
,BC=2.
(1)求證:A1C⊥平面EDB.
(2)求三棱錐E-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O的方程為x2+y2=9,求該圓中經(jīng)過點(diǎn)A(1,2)的弦的中點(diǎn)P的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案