利用數(shù)學歸納法證明“
1
n+1
+
1
n+2
+…+
1
2n
13
24
,(n≥2,n∈N)
”的過程中,由“n=k”變成“n=k+1”時,不等式左邊的變化是( 。
分析:觀察不等式
1
n+1
+
1
n+2
+…+
1
2n
13
24
,(n≥2,n∈N)
左邊的各項,他們都是以
1
n+1
開始,以
1
2n
項結(jié)束,共n項,當由n=k到n=k+1時,項數(shù)也由k變到k+1時,但前邊少了一項,后面多了兩項,分析四個答案,即可求出結(jié)論.
解答:解:n=k時,左邊=
1
k+1
+
1
k+2
+…+
1
k+k

n=k+1時,左邊=
1
(k+1)+1
+
1
(k+1)+2
+…+
1
(k+1)+(k+1)

由“n=k”變成“n=k+1”時,
1
2k+1
+
1
2k+2
-
1
k+1

故選D.
點評:數(shù)學歸納法常常用來證明一個與自然數(shù)集N相關(guān)的性質(zhì),其步驟為:設(shè)P(n)是關(guān)于自然數(shù)n的命題,若1)(奠基) P(n)在n=1時成立;2)(歸納) 在P(k)(k為任意自然數(shù))成立的假設(shè)下可以推出P(k+1)成立,則P(n)對一切自然數(shù)n都成立.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an+1=
an-2
2an-3
,n∈N*a1=
1
2

(Ⅰ)計算a2,a3,a4;(Ⅱ)猜想數(shù)列的通項an,并利用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

利用數(shù)學歸納法證明不等式
1
n+1
+
1
n+2
+…+
1
n+n
1
2
(n>1,n?N*)的過程中,用n=k+1時左邊的代數(shù)式減去n=k時左邊的代數(shù)式的結(jié)果為(  )
A、
1
2(k+1)
B、
1
2k+1
+
1
2(k+1)
C、
1
2k+1
-
1
2(k+1)
D、
1
2k+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

利用數(shù)學歸納法證明不等式1+
1
2
+
1
3
+…
1
2n-1
<f(n)(n≥2,n∈N*)的過程中,由n=k變到n=k+1時,左邊增加了( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an},a1=1,且滿足關(guān)系an-an-1=2(n≥2),
(1)寫出a2,a3,a4,的值,并猜想{an}的一個通項公式.
(2)利用數(shù)學歸納法證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案