已知二次函數(shù)f(x)=ax2+bx+c(a≠0),若方程f(x)=x無實根,求證:方程f(f(x))=x也無實根.
考點:函數(shù)的零點
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用二次函數(shù)的性質(zhì)和一元二次方程無實數(shù)根與判別式的關(guān)系即可得出.
解答: 證明:∵f(x)=ax2+bx+c(a≠0)
方程f(x)=x 即f(x)-x=ax2+(b-1)x+c=0無實根,f(x)-x仍是二次函數(shù),f(x)-x=0仍是二次方程,且無實根,∴△<0.
若a>0,則函數(shù)y=f(x)-x的圖象在x軸上方,∴y>0,即f(x)-x>0恒成立,即:f(x)>x對任意實數(shù)x恒成立.
∴對f(x),有f(f(x))>f(x)>x恒成立,∴f(f(x))=x無實根.
點評:本題考查了二次函數(shù)的性質(zhì)和一元二次方程無實數(shù)根與判別式的關(guān)系,屬于難題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若θ為銳角,求y=3cosθ•sin2θ的最大值是( 。
A、3
B、
2
3
C、
2
3
3
D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若有窮數(shù)列{an}滿足:a1=an,a2=an-1,…,an=a1,即ai=an-i+1(i是正整數(shù),且1≤i≤n)就稱數(shù)列{an}為對稱數(shù)列.
(1)已知數(shù)列{bn}是項數(shù)為7的對稱數(shù)列,且b1,b2,b3,b4成等差數(shù)列,b1=2,b4=11,試寫出數(shù)列{bn}的每一項;
(2)已知數(shù)列{cn}是項數(shù)為2k-1(k>1)的對稱數(shù)列,且ck,ck+1,ck+2,…,c2k-1構(gòu)成首項為50,公差為-4的等差數(shù)列,數(shù)列{cn}的前2k-1項和為s2k-1,問k為何值時s2k-1取得最大值,最大值為多少?
(3)對于給定的正整數(shù)m>1,試寫出所有項數(shù)不超過2m的對稱數(shù)列,使得1、3、5、…、2m-1成為數(shù)列中的連續(xù)項,當m≥1500時,試求其中一個數(shù)列的前2014項和s2014

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知角α的終邊在函數(shù)y=-
1
2
x的圖象上,求sinα和cosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知a,b∈R*,a+b=4,求證:
1
a
+
1
b
≥1.
(2)已知a,b,c∈R*,a+b+c=9,求證:
1
a
+
1
b
+
1
c
≥1.
并類比上面的結(jié)論寫出推廣后的一般性結(jié)論.(不需證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方形A1BA2C的邊長為4,D是A1B的中點,E是BA2上的點,將△A1DC及△A2EC分別沿DC和EC折起,使A1、A2重合于A,且平面ADC⊥平面EAC.
(Ⅰ)求證:AC⊥DE;
(Ⅱ)求二面角A-DE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A既是分式不等式
1
x-3
<1的解集,又是一元二次不等式x2+ax+b>0的解集.
(1)求集合A;
(2)求實數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,已知三棱錐V-ABC中,VA⊥平面ABC,且AC=2,VA=2,∠ABC=90°
(1)求證:BC垂直平面VAB.
(2)求VC與平面ABC所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=
1
2
,AB=1,M是PB的中點.
(1)求異面直線AC與PB所成的角的余弦值;
(2)證明:CM∥面PAD.

查看答案和解析>>

同步練習冊答案