【題目】在對(duì)人們的休閑方式的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人,女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng),男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).

(1)根據(jù)以上數(shù)據(jù)建立一個(gè)的列聯(lián)表;

(2)是否有97.5%的把握認(rèn)為性別與休閑方式有關(guān)系?

【答案】(1)列聯(lián)表見(jiàn)解析;(2)%的把握認(rèn)為性別與休閑方式有關(guān)系.

【解析】

試題分析:(1)閱讀題目,兩個(gè)分類變量是性別是休閑方式,可填寫(xiě)出的列聯(lián)表(2)計(jì)算,即有的把握認(rèn)為休閑方式與性別有關(guān).

試題解析:

解:(1)的列聯(lián)表

(2)假設(shè)休閑方式與性別無(wú)關(guān)

計(jì)算

因?yàn)?/span>,所以有理由認(rèn)為假設(shè)休閑方式與性別無(wú)關(guān)是不合理的,

即有97.5%的把握認(rèn)為休閑方式與性別有關(guān).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1處取得極值,求的值;

2討論的單調(diào)性;

3證明:為自然對(duì)數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求在區(qū)間上的最大值和最小值;

(2)若在區(qū)間上, 函數(shù)的圖象恒在直線下方, 的取值范圍;

(3)設(shè).當(dāng)時(shí), 對(duì)于任意,存在,使,實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓與圓關(guān)于直線對(duì)稱,且點(diǎn)在圓上.

1判斷圓與圓的位置關(guān)系;

2設(shè)為圓上任意一點(diǎn),,三點(diǎn)不共線,的平分線,且交. 求證:的面積之比為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于四種命題的真假判斷正確的是( )

A. 原命題與其逆否命題的真值相同 B. 原命題與其逆命題的真值相同

C. 原命題與其否命題的真值相同 D. 原命題的逆命題與否命題的真值相反

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線,半徑為2的圓相切,圓心軸上且在直線的右上方.

1)求圓的方程;

2)若直線過(guò)點(diǎn)且與圓交于兩點(diǎn)(軸上方,軸下方),問(wèn)在軸正半軸上是否存在定點(diǎn),使得軸平分?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為,圓心在上.

)若圓心也在直線上,過(guò)點(diǎn)作圓的切線,求切線的方程;

)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是定義域?yàn)?/span>R的奇函數(shù).

1的值;

2,試判斷的單調(diào)性不需證明,并求使不等式恒成立的t的取值范圍;

3,,求上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】五一節(jié)期間,某商場(chǎng)為吸引顧客消費(fèi)推出一項(xiàng)優(yōu)惠活動(dòng).活動(dòng)規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤(pán)一次,并獲得相應(yīng)金額的返券.(假定指針等可能地停在任一位置, 指針落在區(qū)域的邊界時(shí),重新轉(zhuǎn)一次)指針?biāo)诘膮^(qū)域及對(duì)應(yīng)的返劵金額見(jiàn)右表.

例如:消費(fèi)218元,可轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)2次,所獲得的返券金額是兩次金額之和.

(1)已知顧客甲消費(fèi)后獲得次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的機(jī)會(huì),已知他每轉(zhuǎn)一次轉(zhuǎn)盤(pán)指針落在區(qū)域邊界的概率為,每次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的結(jié)果相互獨(dú)立,設(shè)為顧客甲轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)指針落在區(qū)域邊界的次數(shù),的數(shù)學(xué)期望,方差.求的值;

(2)顧客乙消費(fèi)280元,并按規(guī)則參與了活動(dòng),他獲得返券的金額記為(元.求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案