【題目】已知函數(shù)fx)=xlnx+2x1

1)求fx)的極值;

2)若對任意的x1,都有fx)﹣kx1)>0kZ)恒成立,求k的最大值.

【答案】1)極小值為﹣e31,無極大值;(2)最大值為4

【解析】

1)求導(dǎo)判斷函數(shù)的單調(diào)性,由極值定義得解;(2)問題轉(zhuǎn)化為上恒成立,構(gòu)造函數(shù),利用導(dǎo)數(shù)求函數(shù)的范圍,進而得到實數(shù)的范圍,由此得到答案.

1)函數(shù)fx)的定義域為(0+∞),fx)=lnx+3,

fx)=0,解得xe3

當(dāng)x∈(0,e3)時,fx)<0,函數(shù)fx)遞減;

當(dāng)x∈(e3,+∞)時,fx)>0,函數(shù)fx)遞增;

fx)的極小值為fe3)=﹣e31,無極大值;

2)原式可化為,

,則,

hx)=x2lnxx1),則

hx)在(1,+∞)上遞增,

故存在唯一的x0∈(3,4),使得hx0)=0,即lnx0x02,

且當(dāng)x∈(1,x0)時,hx)<0,gx)<0,gx)遞減;

當(dāng)x∈(x0+∞)時,hx)>0,gx)>0,gx)遞增;

gxmingx0)=x0+1,

kx0+1∈(4,5),所以實數(shù)k的最大值為4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過正四面體ABCD的頂點A作一個形狀為等腰三角形的截面,且使截面與底面BCD所成的角為,這樣的截面有(

A.6B.12C.16D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在從100到999的所有三位數(shù)中,百位、十位、個位數(shù)字依次構(gòu)成等差數(shù)列的有__________個;構(gòu)成等比數(shù)列的有__________個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間與極值.

(2)當(dāng)時,是否存在,使得成立?若存在,求實數(shù)的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國家正積極推行垃圾分類工作,教育部辦公廳等六部門也發(fā)布了《關(guān)于在學(xué)校推進生活垃圾分類管理工作的通知》.《通知》指出,到2020年底,各學(xué)校生活垃圾分類知識普及率要達(dá)到100%某市教育主管部門據(jù)此做了哪些活動最能促進學(xué)生進行垃圾分類的問卷調(diào)查(每個受訪者只能在問卷的4個活動中選擇一個)如圖是調(diào)查結(jié)果的統(tǒng)計圖,以下結(jié)論正確的是(  。

A.回答該問卷的受訪者中,選擇的(2)和(3)人數(shù)總和比選擇(4)的人數(shù)多

B.回該問卷的受訪者中,選擇校園外宣傳的人數(shù)不是最少的

C.回答該問卷的受訪者中,選擇(4)的人數(shù)比選擇(2)的人數(shù)可能多30

D.回答該問卷的總?cè)藬?shù)不可能是1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是某校某班44名同學(xué)的某次考試的物理成績y和數(shù)學(xué)成績x的散點圖:

根據(jù)散點圖可以看出yx之間有線性相關(guān)關(guān)系,但圖中有兩個異常點AB.經(jīng)調(diào)查得知,A考生由于重感冒導(dǎo)致物理考試發(fā)揮失常,B生因故未能參加物理考試.為了使分析結(jié)果更科學(xué)準(zhǔn)確,剔除這兩組數(shù)據(jù)后,對剩下的數(shù)據(jù)作處理,得到一些統(tǒng)計量的值:

,,,其中分別表示這42名同學(xué)的數(shù)學(xué)成績、物理成績,yx的相關(guān)系數(shù)

1)若不剔除A、B兩名考生的數(shù)據(jù),用44數(shù)據(jù)作回歸分析,設(shè)此時yx的相關(guān)系數(shù)為,試判斷r的大小關(guān)系,并說明理由;

2)求y關(guān)于x的線性回歸方程(系數(shù)精確到),并估計如果B考生參加了這次物理考試(已知B考生的數(shù)學(xué)成績?yōu)?/span>125分),物理成績是多少?(精確到個位).

附:回歸方程中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知函數(shù)是自然對數(shù)的底數(shù)).

1)若曲線處的切線也是拋物線的切線,求的值;

2)若對于任意恒成立,試確定實數(shù)的取值范圍;

3)當(dāng)時,是否存在,使曲線在點處的切線斜率與上的最小值相等?若存在,求符合條件的的個數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)給出下列四個結(jié)論:①對,,使得無解;②對,,使得有兩解;③當(dāng)時,,使得有解;④當(dāng)時,,使得有三解.其中,所有正確結(jié)論的序號是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形沿折成二面角,其中的中點.已知,,,的中點.

1)求證:平面

2)求與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案