已知圓C的圓心在直線l1:x-y+1=0上,且與直線l2:3x+4y+6=0相切,同時圓C截直線l3:4x+3y+2=0所得的弦長為數(shù)學(xué)公式,求圓C的標準方程.

解:設(shè)圓心的坐標為(a,a+1),故圓的半徑等于圓心到直線l2的距離,
故半徑 r==
圓心到直線l3的距離等于 =
∴r2==+,解得 a=5,故圓心坐標為(5,6),半徑 r=9,
故圓C的標準方程為 (x-5)2+(y-6)2=81.
分析:設(shè)圓心的坐標為(a,a+1),根據(jù)半徑等于圓心到直線l2的距離可得 r=,再求出圓心到直線l3的距離
,由弦長公式解得 a的值,即得圓心坐標和半徑的值,從而寫出圓C的標準方程.
點評:本題考查點到直線的距離公式,弦長公式,求圓的標準方程的方法,求出圓心坐標和半徑的值,是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心在直線x-3y=0上,且圓C與x軸相切,若圓C截直線y=x得弦長為2
7
,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心在直線y=x+1上,且過點A(1,3),與直線x+2y-7=0相切.
(1)求圓C的方程;
(2)設(shè)直線l:ax-y-2=0(a>0)與圓C相交于A、B兩點,求實數(shù)a的取值范圍;
(3)在(Ⅱ)的條件下,是否存在實數(shù)a,使得弦AB的垂直平分線l過點P(-2,4),若存在,求出實數(shù)a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心在直線y=2x上,且與直線l:x+y+1=0相切于點P(-1,0).
(Ⅰ)求圓C的方程;
(Ⅱ)若A(1,0),點B是圓C上的動點,求線段AB中點M的軌跡方程,并說明表示什么曲線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心在直線2x-y-3=0上,且經(jīng)過點A(5,2),B(3,2),
(1)求圓C的標準方程;
(2)直線l過點P(2,1)且與圓C相交的弦長為2
6
,求直線l的方程.
(3)設(shè)Q為圓C上一動點,O為坐標原點,試求△OPQ面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心在直線l1:x-y-1=0上,與直線l2:4x+3y+14=0相切,且截得直線l3:3x+4y+10=0所得弦長為6,求圓C的方程.

查看答案和解析>>

同步練習冊答案