已知f(x)=x2-x+1,則f(x+1)=
 
考點:函數(shù)解析式的求解及常用方法
專題:計算題
分析:直接將(x+1)看作x代入整理即可.
解答: 解:∵f(x)=x2-x+1,
∴f(x+1)=(x+1)2-(x+1)+1  
=x2+2x+1-x-1+1
=x2+x+1
故答案為:x2+x+1.
點評:本題考察了函數(shù)解析式的求法,結合本題可將求函數(shù)解析式的幾種方法進行復習,進一步鞏固.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

不等式sin2θ-(2
2
+
2
a)sin(θ+
π
4
)-
2
2
cos(θ-
π
4
)
>-3-2a對θ∈[0,
π
2
]恒成立.對于上面的不等式小川同學設x=sinθ+cosθ,則有sin2θ=x2-1,請照這一思路將不等式左邊化為關于x的函數(shù)y=h(x)
(1)求函數(shù)y=h(x)的解析式與定義域
(2)求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設{an}是正數(shù)組成的數(shù)列,其前n項和為Sn,并且對任意的n∈N*,an與2的等差中項等于Sn與2的等比中項.
(1)求數(shù)列{an}的通項公式;
(2)設A={a1,a2,…,an,…},bn=2×3n-1,數(shù)列{bn}的前n項和為Tn
①求證:對任意的n∈N*,都有bn∈A;
②設數(shù)列{bn}的第n項是數(shù)列{an}中第r項,求
lim
n→∞
r
Tn
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,設AD為BC邊上的高,且AD=BC,b,c分別表示角B,C所對的邊長,則
b
c
+
c
b
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有甲、乙兩個班,進行數(shù)學考試,按學生考試及格與不及格統(tǒng)計成績后,得到如下的列聯(lián)表根據(jù)表中數(shù)據(jù),你認為成績及格與班級有關?
  不及格 及格 總計
甲班 10 35 45
乙班 7 38 45
總計 17 73 90
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a=
2
0
(2x2-x)dx,則(
3
2
ax-
1
x
4的展開式中x的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在半徑為5的扇形中,圓心角為2rad,則扇形的面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若x∈[2,+∞),不等式(m-m2)x+x2+1>0恒成立,則實數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

莖葉圖記錄了甲、乙兩組各6名學生在一次數(shù)學測試中的成績(單位:分).已知甲組數(shù)據(jù)的眾數(shù)為124,乙組數(shù)據(jù)的平均數(shù)即為甲組數(shù)據(jù)的中位數(shù),則x、y的值分別為( 。
A、4、5B、5、4
C、4、4D、5、5

查看答案和解析>>

同步練習冊答案