【題目】正方形與梯形所在平面互相垂直,,,,,點(diǎn)是中點(diǎn) .
(1)求證:平面;
(2)求三棱錐的體積.
【答案】(1)見解析;(2)
【解析】試題分析:(1)證明線面平行,構(gòu)造平行四邊形ABMN先得到線線平行,再得到線面平行。(2)原棱錐的體積不好求轉(zhuǎn)而去求等體積的VB﹣DEM,
解析:
(Ⅰ)證明:取ED的中點(diǎn)N,連接MN.
又∵點(diǎn)M是EC中點(diǎn).
∴MN∥DC,MN=.
而AB∥DC,AB=DC.
∴
∴四邊形ABMN是平行四邊形.
∴BM∥AN.
而BM平面ADEF,AN平面ADEF,
∴BM∥平面ADEF.
(Ⅱ)解:∵M(jìn)為EC的中點(diǎn),
∴
∵AD⊥CD,AD⊥DE,且DE與CD相交于D
∴AD⊥平面CDE.
∵AB∥CD,
∴三棱錐B﹣DME的高=AD=2,
∴VM﹣BDE=VB﹣DEM ,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點(diǎn)分別為,,若橢圓經(jīng)過點(diǎn),且的面積為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)斜率為的直線與以原點(diǎn)為圓心,半徑為的圓交于,兩點(diǎn),與橢圓交于,兩點(diǎn),且,當(dāng)取得最小值時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),則(ⅰ)____________.
(ⅱ)給出下列三個(gè)命題:①函數(shù)是偶函數(shù);②存在,使得以點(diǎn)為頂點(diǎn)的三角形是等腰三角形;③存在,使得以點(diǎn)為頂點(diǎn)的四邊形為菱形.
其中,所有真命題的序號是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)R.
(1)當(dāng)時(shí),求函數(shù)的最小值;
(2)若對任意,恒有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,值域?yàn)?/span>,即,若,則稱在上封閉.
(1)分別判斷函數(shù), 在上是否封閉,說明理由;
(2)函數(shù)的定義域?yàn)?/span>,且存在反函數(shù),若函數(shù)在上封閉,且函數(shù)在上也封閉,求實(shí)數(shù)的取值范圍;
(3)已知函數(shù)的定義域?yàn)?/span>,對任意,若,有恒成立,則稱在上是單射,已知函數(shù)在上封閉且單射,并且滿足 ,其中(),,證明:存在的真子集,
,使得在所有()上封閉.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R的函數(shù)是偶函數(shù),且滿足上的解析式為,過點(diǎn)作斜率為k的直線l,若直線l與函數(shù)的圖象至少有4個(gè)公共點(diǎn),則實(shí)數(shù)k的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,我國“霧霾天氣”頻發(fā),嚴(yán)重影響人們的身體健康.根據(jù)空氣質(zhì)量指數(shù)API(為整數(shù))的不同,可將空氣質(zhì)量分級如下表:
API | 0~50 | 51~100 | 101~150 | 151~200 | 201~250 | 251~300 | >300 |
級別 | Ⅰ | Ⅱ | Ⅲ1 | Ⅲ2 | Ⅳ1 | Ⅳ2 | Ⅴ |
狀況 | 優(yōu) | 良 | 輕微污染 | 輕度污染 | 中度污染 | 中度重污染 | 重度污染 |
對某城市一年(365天)的空氣質(zhì)量進(jìn)行監(jiān)測,獲得的API數(shù)據(jù)按照區(qū)間[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]進(jìn)行分組,得到頻率分布直方圖如圖.
(1)求頻率分布直方圖中x的值;
(2)計(jì)算一年中空氣質(zhì)量分別為良和輕微污染的天數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(1)當(dāng)時(shí),求不等式的解集;
(2)若函數(shù)的值域?yàn)?/span>,且,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分13分)已知函數(shù),.
(Ⅰ)求函數(shù)的最小正周期與單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)在上的最大值與最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com