已知過原點的直線和圓x2+y2+4x+3=0相切,若切點在第三象限,則該直線的方程為____________.

思路解析:先根據(jù)條件設(shè)出過原點的直線方程,再利用和圓相切的條件求出切線方程,最后檢驗切點是否在第三象限即可得出答案.

    當(dāng)直線斜率不存在時顯然不符合條件.設(shè)所求直線方程為y=kx,而已知圓可以化為(x+2)2+y2=1,圓心到直線距離等于半徑,即=1k=±.

而根據(jù)切點在第三象限可知切線方程應(yīng)為y=x.

答案:y=x

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1的中心和拋物線C2的頂點都在原點,且兩曲線的焦點均在x軸上,若A(1,2),B(2,0),C(
2
,
2
2
)
中有兩點在橢圓C1上,另一點在拋物線C2上.
(Ⅰ)求橢圓C1和拋物線C2的方程;
(Ⅱ)設(shè)直線l與橢圓C1交于M,N兩點,與拋物線C2交于P,Q兩點.問是否存在直線l使得以線段MN為直徑的圓和以線段PQ為直徑的圓都過原點?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心為原點O,一個焦點為F(
3
,0)
,離心率為
3
2
.以原點為圓心的圓O與直線y=x+4
2
互相切,過原點的直線l與橢圓交于A,B兩點,與圓O交于C,D兩點.
(1)求橢圓和圓O的方程;
(2)線段CD恰好被橢圓三等分,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的方程為:(x+1)2+(y-2)2=2.
(1)若圓C的切線l在x軸和y軸上的截距相等,求切線l的方程;
(2)過原點的直線m與圓C相交于A、B兩點,若|AB|=2,求直線m的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓(x-3)2+y2=4和過原點的直線y=kx的交點為P、Q,則|OP|•|OQ|的值為
5
5

查看答案和解析>>

同步練習(xí)冊答案