設b和c分別是先后拋擲一枚骰子得到的點數(shù),用隨機變量ξ表示方程x2+bx+c=0實根的個數(shù)(重根按一個計).
(1)求方程x2+bx+c=0有實根的概率;
(2)(理)求ξ的分布列和數(shù)學期望
(文)求P(ξ=1)的值
(3)(理)求在先后兩次出現(xiàn)的點數(shù)中有5的條件下,方程x2+bx+c=0有實根的概率.
【答案】分析:(1)根據(jù)題意可得基本事件總數(shù)為6×6=36,若使方程有實根,則△=b2-4c≥0,即,再利用列舉的方法求出目標事件個數(shù),進而得到答案.
(2)(理)由(1)可得ξ=0,1,2,則 ,,,進而得到分布列與數(shù)學期望.
(文)由(1)可得ξ=1及方程只有一個根情況所包含的基本時間數(shù),進而求出其發(fā)生的概率.
(3)計算出“先后兩次出現(xiàn)的點數(shù)中有5”的概率與“先后兩次出現(xiàn)的點數(shù)中有5并且方程x2+bx+c=0有實根”的概率,進而利用條件概率的公式可得答案.
解答:解:(1)基本事件總數(shù)為6×6=36,
若使方程有實根,則△=b2-4c≥0,即
當c=1時,b=2,3,4,5,6;
當c=2時,b=3,4,5,6;
當c=3時,b=4,5,6;
當c=4時,b=4,5,6;
當c=5時,b=5,6;
當c=6時,b=5,6,
目標事件個數(shù)為5+4+3+3+2+2=19,
因此方程x2+bx+c=0有實根的概率為
(2)(理)由題意知,ξ=0,1,2,則 ,,
故ξ的分布列為
12

P
ξ的數(shù)學期望
(文)
(3)記“先后兩次出現(xiàn)的點數(shù)中有5”為事件M,“方程ax2+bx+c=0有實根”為事件N,
,,
點評:本題主要考查離散型隨機變量的分布列與期望,以及條件概率的公式.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設b和c分別是先后拋擲一枚骰子得到的點數(shù),用隨機變量ξ表示方程x2+bx+c=0實根的個數(shù)(重根按一個計).
(1)求方程x2+bx+c=0有實根的概率;
(2)(理)求ξ的分布列和數(shù)學期望
(文)求P(ξ=1)的值
(3)(理)求在先后兩次出現(xiàn)的點數(shù)中有5的條件下,方程x2+bx+c=0有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設b和c分別是先后拋擲一枚骰子得到的點數(shù),用隨機變量ξ表示方程x2+bx+c=0實根的個數(shù)(重根按一個計).
(I)求方程x2+bx+c=0有實根的概率;
(II)求ξ的分布列和數(shù)學期望;
(III)求在先后兩次出現(xiàn)的點數(shù)中有5的條件下,方程x2+bx+c=0有實根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設b和c分別是先后拋擲一枚骰子得到的點數(shù),則在先后兩次出現(xiàn)的點數(shù)中有5的條件下,b>c的概率為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設b和c分別是先后拋擲一枚骰子得到的點數(shù).
(1)求b≤2且c≥3的概率;
(2)求函數(shù)f(x)=x2+2bx+c圖象與x軸無交點的概率;
(3)用隨機變量ξ表示函數(shù)f(x)=x2+2bx+c圖象與x軸交點的個數(shù),求ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設b和c分別是先后拋擲一枚骰子得到的點數(shù).
(I)求b≤2,且c≥3的概率;
(II)求函數(shù)f(x)=x2+bx+c與x軸無交點的概率.

查看答案和解析>>

同步練習冊答案