設(shè)是公比為q的等比數(shù)列,令,若數(shù)列的連續(xù)四項(xiàng)在集合{—53,—23,19,37,82}中,則q等于(     )     

A.B.C.D.

C

解析本題考查的是等比數(shù)列。因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/01/7/1nl693.png" style="vertical-align:middle;" />,所以的連續(xù)四項(xiàng)在中。通過(guò)觀察得知18,-24,36,-54,81或81,-54,36,-24,18成等比,公比為,
應(yīng)選C。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m個(gè)不全相等的正數(shù)a1,a2,…,am(m≥7)依次圍成一個(gè)圓圈,
(Ⅰ)若m=2009,且a1,a2,…,a1005是公差為d的等差數(shù)列,而a1,a2009,a2008,…,a1006是公比為q=d的等比數(shù)列;數(shù)列a1,a2,…,am的前n項(xiàng)和Sn(n≤m)滿足:S3=15,S2009=S2007+12a1,求通項(xiàng)an(n≤m);
(Ⅱ)若每個(gè)數(shù)an(n≤m)是其左右相鄰兩數(shù)平方的等比中項(xiàng),求證:a1+…+a6+a72+…+am2>ma1a2am

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:重慶 題型:解答題

設(shè)m個(gè)不全相等的正數(shù)a1,a2,…,am(m≥7)依次圍成一個(gè)圓圈,
(Ⅰ)若m=2009,且a1,a2,…,a1005是公差為d的等差數(shù)列,而a1,a2009,a2008,…,a1006是公比為q=d的等比數(shù)列;數(shù)列a1,a2,…,am的前n項(xiàng)和Sn(n≤m)滿足:S3=15,S2009=S2007+12a1,求通項(xiàng)an(n≤m);
(Ⅱ)若每個(gè)數(shù)an(n≤m)是其左右相鄰兩數(shù)平方的等比中項(xiàng),求證:a1+…+a6+a72+…+am2>ma1a2am

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:重慶市高考真題 題型:解答題

設(shè)m個(gè)不全相等的正數(shù)a1,a2,…,am(m≥7)依次圍成一個(gè)圓圈,
(Ⅰ)若m=2009,且a1,a2,…,a1005是公差為d的等差數(shù)列,而a1,a2009,a2008,…,a1006是公比為q=d的等比數(shù)列;數(shù)列a1,a2,…,am的前n項(xiàng)和Sn(n≤m)滿足:S3=15,S2009=S2007+12a1,求通項(xiàng)an(n≤m);
(Ⅱ)若每個(gè)數(shù)an(n≤m)是其左右相鄰兩數(shù)平方的等比中項(xiàng),求證:
。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高考數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

設(shè)m個(gè)不全相等的正數(shù)a1,a2,…,am(m≥7)依次圍成一個(gè)圓圈,
(Ⅰ)若m=2009,且a1,a2,…,a1005是公差為d的等差數(shù)列,而a1,a2009,a2008,…,a1006是公比為q=d的等比數(shù)列;數(shù)列a1,a2,…,am的前n項(xiàng)和Sn(n≤m)滿足:S3=15,S2009=S2007+12a1,求通項(xiàng)an(n≤m);
(Ⅱ)若每個(gè)數(shù)an(n≤m)是其左右相鄰兩數(shù)平方的等比中項(xiàng),求證:a1+…+a6+a72+…+am2>ma1a2am

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年重慶市高考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

設(shè)m個(gè)不全相等的正數(shù)a1,a2,…,am(m≥7)依次圍成一個(gè)圓圈,
(Ⅰ)若m=2009,且a1,a2,…,a1005是公差為d的等差數(shù)列,而a1,a2009,a2008,…,a1006是公比為q=d的等比數(shù)列;數(shù)列a1,a2,…,am的前n項(xiàng)和Sn(n≤m)滿足:S3=15,S2009=S2007+12a1,求通項(xiàng)an(n≤m);
(Ⅱ)若每個(gè)數(shù)an(n≤m)是其左右相鄰兩數(shù)平方的等比中項(xiàng),求證:a1+…+a6+a72+…+am2>ma1a2am

查看答案和解析>>

同步練習(xí)冊(cè)答案