甲有一只放有x個(gè)紅球,y個(gè)黃球,z個(gè)白球,且x+y+z=6(x,y,z∈N);乙有一只放有3個(gè)紅球,2個(gè)黃球,1個(gè)白球的箱子,兩人各自從自己的箱子中任取一球,規(guī)定:當(dāng)兩球同色時(shí)甲勝,異色時(shí)乙勝.

(Ⅰ)用x,y,z表示甲勝的概率;

(Ⅱ)若規(guī)定甲取紅,黃,白而勝的得分分別為1,2,3分,否則得0分,求甲得分的期望的最大值及此時(shí)x,y,z的值.

答案:解:(1)甲勝的概率為P,依題意得分類求解概率;P=

(Ⅱ)設(shè)甲的得分為隨機(jī)變量ξ,則P(ξ=3)=;P(ξ=2)=

P(ξ=1)=;

P(ξ=0)=1-,

∴Eξ=3×,

因?yàn)閤+y+z=6(x,y,z∈N),∴y=6時(shí),Eξ取得最大值為,此時(shí)x=z=0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲有一只放有x個(gè)紅球,y個(gè)白球,z個(gè)黃球的箱子,箱內(nèi)共有6個(gè)球,且每種顏色的球至少有一個(gè);乙有一只放有3個(gè)紅球,2個(gè)白球,1個(gè)黃球的箱子.兩人各自從自己的箱子中任取一球,規(guī)定:當(dāng)兩球同色時(shí)為甲勝,兩球異色時(shí)為乙勝.
(1)當(dāng)x=1,且甲勝的概率為
14
時(shí),求y與z;
(2)當(dāng)x=2,y=3,z=1時(shí),規(guī)定甲取紅,白,黃而勝的得分分別為1分,2分,3分,負(fù)則得0分,記甲得分為隨機(jī)變量ξ,求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅西北師大附中高三11月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

甲有一只放有x個(gè)紅球,y個(gè)黃球,z個(gè)白球的箱子,乙有一只放有3個(gè)紅球,2個(gè)黃球,1個(gè)白球的箱子,

(1)兩個(gè)各自從自己的箱子中任取一球,規(guī)定:當(dāng)兩球同色時(shí)甲勝,異色時(shí)乙勝。若用x、y、z表示甲勝的概率;

2)在(1)下又規(guī)定當(dāng)甲取紅、黃、白球而勝的得分分別為1、2、3分,否則得0分,求甲得分的期望的最大值及此時(shí)x、y、z的值。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲有一只放有x個(gè)紅球,y個(gè)白球,z個(gè)黃球的箱子,箱內(nèi)共有6個(gè)球,且每種顏色的球至少有一個(gè);乙有一只放有3個(gè)紅球,2個(gè)白球,1個(gè)黃球的箱子.兩人各自從自己的箱子中任取一球,規(guī)定:當(dāng)兩球同色時(shí)為甲勝,兩球異色時(shí)為乙勝.
(1)當(dāng)x=1,且甲勝的概率為
1
4
時(shí),求y與z;
(2)當(dāng)x=2,y=3,z=1時(shí),規(guī)定甲取紅,白,黃而勝的得分分別為1分,2分,3分,負(fù)則得0分,記甲得分為隨機(jī)變量ξ,求ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009年重慶市江北中學(xué)高考數(shù)學(xué)考前熱身練習(xí)試卷3(解析版) 題型:解答題

甲有一只放有x個(gè)紅球,y個(gè)白球,z個(gè)黃球的箱子,箱內(nèi)共有6個(gè)球,且每種顏色的球至少有一個(gè);乙有一只放有3個(gè)紅球,2個(gè)白球,1個(gè)黃球的箱子.兩人各自從自己的箱子中任取一球,規(guī)定:當(dāng)兩球同色時(shí)為甲勝,兩球異色時(shí)為乙勝.
(1)當(dāng)x=1,且甲勝的概率為時(shí),求y與z;
(2)當(dāng)x=2,y=3,z=1時(shí),規(guī)定甲取紅,白,黃而勝的得分分別為1分,2分,3分,負(fù)則得0分,記甲得分為隨機(jī)變量ξ,求ξ的分布列及期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案