已知函數(shù), 其中.

(1)當(dāng)時,求曲線在點處的切線方程;

(2)當(dāng)時,求曲線的單調(diào)區(qū)間與極值.

【解析】第一問中利用當(dāng)時,,

,得到切線方程

第二問中,

對a分情況討論,確定單調(diào)性和極值問題。

解: (1) 當(dāng)時,,

………………………….2分

   切線方程為: …………………………..5分

 (2)

…….7

分類: 當(dāng)時, 很顯然

的單調(diào)增區(qū)間為:  單調(diào)減區(qū)間: ,

, …………  11分

當(dāng)的單調(diào)減區(qū)間:  單調(diào)增區(qū)間: ,

,

 

【答案】

 (1)      (2) 見解析

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(09年大豐調(diào)研) (16分)

已知函數(shù)(其中) ,

從左到右依次是函數(shù)圖象上三點,且.

(Ⅰ) 證明: 函數(shù)上是減函數(shù);

(Ⅱ)求證:是鈍角三角形;

(Ⅲ) 試問,能否是等腰三角形?若能,求面積的最大值;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(06年天津卷文)(12分)

已知函數(shù)其中為參數(shù),且

       (I)當(dāng)時,判斷函數(shù)是否有極值;

       (II)要使函數(shù)的極小值大于零,求參數(shù)的取值范圍;

       (III)若對(II)中所求的取值范圍內(nèi)的任意參數(shù),函數(shù)在區(qū)間內(nèi)都是增函數(shù),求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)  其中。作出函數(shù)的圖象;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆浙江省杭州市蕭山五校高二下期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)(其中常數(shù)a,b∈R)。 是奇函數(shù).

(Ⅰ)求的表達(dá)式;

(Ⅱ)求在區(qū)間[1,2]上的最大值和最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年四川省成都市高三上學(xué)期九月診斷性考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本題滿分12分)

已知函數(shù)其中a>0,e為自然對數(shù)的底數(shù)。

(I)求

(II)求的單調(diào)區(qū)間;

(III)求函數(shù)在區(qū)間[0,1]上的最大值。

 

查看答案和解析>>

同步練習(xí)冊答案