【題目】平面直角坐標(biāo)系中,過橢圓:右焦點的直線交于,兩點,且橢圓的離心率為.
(1)求橢圓的方程;
(2),為上的兩點,若四邊形的對角線,求四邊形面積的最大值.
【答案】(1);(2).
【解析】
(1)先求出右焦點坐標(biāo)為,結(jié)合離心率可得,求出后可得橢圓的方程.
(2)聯(lián)立直線的方程和橢圓方程后可求的坐標(biāo),從而可求.設(shè)的方程為,聯(lián)立直線的方程和橢圓的方程,消去后利用弦長公式可得,從而可得,結(jié)合的范圍可求面積的最大值.
解:(1)橢圓的右焦點為,則.
離心率,則.
故,所以的方程為.
(Ⅱ)由,解得或,因此.
設(shè)直線的方程為,設(shè),.
由得.
,故.
又的交點在之間,故.
因為直線的斜率為1,
所以.
又四邊形的面積,
當(dāng)時,取得最大值,最大值為,所以四邊形面積的最大值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面,是正三角形,與的交點恰好是中點,又,.
(1)求證:;
(2)設(shè)為的中點,點在線段上,若直線平面,求的長;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點,過其準(zhǔn)線與軸的交點作直線,
(1)若直線與拋物線相切于點,則=_____________.
(2)設(shè),若直線與拋物線交于點,且,則=_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查各校學(xué)生體質(zhì)健康達(dá)標(biāo)情況,某機構(gòu)M采用分層抽樣的方法從校抽取了名學(xué)生進(jìn)行體育測試,成績按照以下區(qū)間分為七組:[30,40),[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],并得到如下頻率分布直方圖.根據(jù)規(guī)定,測試成績低于60分為體質(zhì)不達(dá)標(biāo).已知本次測試中不達(dá)標(biāo)學(xué)生共有20人.
(1)求的值;
(2)現(xiàn)從校全體同學(xué)中隨機抽取2人,以頻率作為概率,記表示成績不低于90分的人數(shù),求的分布列及數(shù)學(xué)期望;
(3)另一機構(gòu)N也對該校學(xué)生做同樣的體質(zhì)達(dá)標(biāo)測試,并用簡單隨機抽樣方法抽取了100名學(xué)生,經(jīng)測試有20名學(xué)生成績低于60分.計算兩家機構(gòu)測試成績的不達(dá)標(biāo)率,你認(rèn)為用哪一個值作為對該校學(xué)生體質(zhì)不達(dá)標(biāo)率的估計較為合理,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)把曲線向下平移個單位,然后各點橫坐標(biāo)變?yōu)樵瓉淼?/span>倍得到曲線(縱坐標(biāo)不變),設(shè)點是曲線上的一個動點,求它到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市教育部門為研究高中學(xué)生的身體素質(zhì)與課外體育鍛煉時間的關(guān)系,對該市某校200名高中學(xué)生的課外體育鍛煉平均每天運動的時間進(jìn)行調(diào)查,數(shù)據(jù)如下表:(平均每天鍛煉的時間單位:分鐘)
平均每天鍛煉的時間(分鐘) | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
將學(xué)生日均課外體育運動時間在上的學(xué)生評價為“課外體育達(dá)標(biāo)”.
(1)請根據(jù)上述表格中的統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并通過計算判斷是否能在犯錯誤的概率不超過0.01的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計 | |
男 | |||
女 | 20 | 110 | |
合計 |
(2)從上述課外體育不達(dá)標(biāo)的學(xué)生中,按性別用分層抽樣的方法抽取10名學(xué)生,再從這10名學(xué)生中隨機抽取3人了解他們鍛煉時間偏少的原因,記所抽取的3人中男生的人數(shù)為隨機變量為,求的分布列和數(shù)學(xué)期望.
(3)將上述調(diào)查所得到的頻率視為概率來估計全市的情況,現(xiàn)在從該市所有高中學(xué)生中,抽取4名學(xué)生,求其中恰好有2名學(xué)生是課外體育達(dá)標(biāo)的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
在平面直角坐標(biāo)系xOy中,點B與點A(-1,1)關(guān)于原點O對稱,P是動點,且直線AP與BP的斜率之積等于.
(Ⅰ)求動點P的軌跡方程;
(Ⅱ)設(shè)直線AP和BP分別與直線x=3交于點M,N,問:是否存在點P使得△PAB與△PMN的面積相等?若存在,求出點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com