【題目】已知邊長為4的正三角形ABC的邊AB、AC上分別有兩點D、E,DE//BC且DE=3,現將△ABC沿DE折成直二面角A﹣DE﹣B,在空間中取一點F使得ADBF為平行四邊形,連接AC、FC得六面體ABCEDF,G是BC邊上動點.
(1)若EG//平面ACF,求CG的長;
(2)若G為BC中點,求二面角G﹣AE﹣D的平面角的余弦值.
【答案】(1)1;(2).
【解析】
(1)由平行四邊形可得AF//BD,則BD//平面ACF,再由平面ACF∩平面BCED=CH,可得BD//CH,同理EG//CH,則BD//EG,即可求解;
(2)取DE中點O,連接AO,OG(取BC中點G),以O為坐標原點,分別以OG,OE,OA所在直線為x,y,z軸建立空間直角坐標系,求得平面AEG的法向量,取平面AED的一個法向量為,進而利用數量積求解即可.
(1)設平面ACF與平面BCED的交線為CH(H在直線DE上),
∵ADBF為平行四邊形,∴AF//BD,
∵AF平面ACF,BD平面ACF,
∴BD//平面ACF,
又BD平面BCED, 平面ACF∩平面BCED=CH,∴BD//CH,
∵EG//平面ACF,EG平面BCED,平面ACF∩平面BCED=CH,∴EG//CH,
∴BD//EG,
∴是平行四邊形,
∴BG=DE=3,則CG=BC-BG=1
(2)取DE中點O,連接AO,OG(取BC中點G),則AO⊥DE,OG⊥DE,
又平面ADE⊥平面BCED,且平面ADE∩BCED=DE,∴AO⊥平面BCED,
以O為坐標原點,分別以OG,OE,OA所在直線為x,y,z軸建立空間直角坐標系,如圖所示,
則E(0,,0),A(0,0,),G(,0,0),
則,,
設平面AEG的法向量為,
由,取z=1,得,
取平面AED的一個法向量為,
∴,
∴二面角G﹣AE﹣D的平面角的余弦值為.
科目:高中數學 來源: 題型:
【題目】某藝術品公司欲生產一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內接圓錐組成,圓錐的側面用于藝術裝飾,如圖1.為了便于設計,可將該禮品看成是由圓O及其內接等腰三角形繞底邊上的高所在直線旋轉而成,如圖2.已知圓O的半徑為,設,,圓錐的側面積為(S圓錐的側面積(R-底面圓半徑,I-母線長))
(1)求S關于的函數關系式;
(2)為了達到最佳觀賞效果,要求圓錐的側面積S最大.求S取得最大值時腰的長度
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】《九章算術》是我國古代的數學名著,書中有如下問題:“今有五人分五錢,令上兩人所得與下三人等。問各得幾何?”其意思是:“已知甲、乙、丙、丁、戊五人分五錢,甲、乙兩人所得之和與丙、丁、戊三人所得之和相等,且甲、乙、丙、丁、戊所得依次成等差數列。問五人各得多少錢?”(“錢”是古代的一種重量單位)。這個問題中,戊所得為( )
A. 錢 B. 錢 C. 錢 D. 錢
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設a為常數,函數f(x)=x(lnx﹣1)﹣ax2,給出以下結論:(1)f(x)存在唯一零點與a的取值無關;(2)若a=e﹣2,則f(x)存在唯一零點;(3)若a<e﹣2,則f(x)存在兩個零點.其中正確的個數是( )
A.3B.2C.1D.0
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點是,左右頂點是,離心率是,過的直線與橢圓交于兩點P、Q(不是左、右頂點),且的周長是,
直線與交于點M.
(1)求橢圓的方程;
(2)(ⅰ)求證直線與交點M在一條定直線l上;
(ⅱ)N是定直線l上的一點,且PN平行于x軸,證明:是定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體中,點是棱上的一個動點,平面交棱于點.下列命題正確的為_______________.
①存在點,使得//平面;
②對于任意的點,平面平面;
③存在點,使得平面;
④對于任意的點,四棱錐的體積均不變.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】數列1,2,1,2,2,1,2,2,2,1,2,2,2,2,1,2,,其相鄰的兩個1被2隔開,第對1之間有個2,則數列的前209項的和為( )
A. 279 B. 289 C. 399 D. 409
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C:x2+y2+2kx+(4k+10)y+10k+20=0,其中k≠-1.
(1)求證:曲線C都表示圓,并且這些圓心都在同一條直線上;
(2)證明:曲線C過定點;
(3)若曲線C與x軸相切,求k的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com