分析 (1)通過對an=2an-1+1(n≥2)變形可知an+1=2(an-1+1)(n≥2),利用a4+1=16可知an+1=2n,進而可得結論;
(2)通過(1)知bn=$\frac{n}{{2}^{n}}$,利用錯位相減法計算即得結論.
解答 解:(1)∵an=2an-1+1(n≥2),
∴an+1=2(an-1+1)(n≥2),
即數列{an+1}是公比為2的等比數列,
又∵a4+1=15+1=16,
∴an+1=16•2n-4=2n,
∴an=-1+2n;
(2)由(1)知bn=$\frac{n}{{a}_{n}+1}$=$\frac{n}{{2}^{n}}$,
∴Sn=$\frac{1}{2}$+2•$\frac{1}{{2}^{2}}$+…+n•$\frac{1}{{2}^{n}}$,①
$\frac{1}{2}$Sn=$\frac{1}{{2}^{2}}$+2•$\frac{1}{{2}^{3}}$+…+(n-1)•$\frac{1}{{2}^{n}}$+n•$\frac{1}{{2}^{n+1}}$,②
①-②得:$\frac{1}{2}$Sn=$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+$\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n}}$-n•$\frac{1}{{2}^{n+1}}$
=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$
=1-$\frac{n+2}{{2}^{n+1}}$,
整理得:Sn=2-$\frac{n+2}{{2}^{n}}$.
點評 本題考查數列的通項及前n項和,考查運算求解能力,利用錯位相減法是解決本題的關鍵,注意解題方法的積累,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ($\frac{π}{2}$,$\frac{3π}{4}$)∪(π,$\frac{5π}{4}$) | B. | ($\frac{π}{4},\frac{π}{2}$)∪(π,$\frac{5π}{4}$) | C. | ($\frac{π}{2}$,$\frac{3π}{4}$)∪($\frac{5π}{4},\frac{3π}{2}$) | D. | ($\frac{π}{4},\frac{π}{2}$)∪($\frac{3π}{4},π$) |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com