解:(1)由于函數(shù)f(x)=x+
,其中常數(shù)λ>0,故函數(shù)的定義域為R,
且f(-x)=-x+
=-f(x),故函數(shù)為奇函數(shù).
(2)函數(shù)f(x)在區(qū)間[1,+∞)上單調(diào)遞增.
證明:任取1≤x
1<x
2,∵f(x
1)-f(x
2)=(x
1+
)-(x
2+
)=(x
1-x
2)+
=(x
1-x
2)•
,
由1≤x
1<x
2,可得 x
1-x
2 <0,x
1•x
2,>1,∴f(x
1)<f(x
2),
故函數(shù)f(x)在區(qū)間[1,+∞)上單調(diào)遞增.…
(3)任取1≤x
1<x
2,∵f(x
1)-f(x
2)=(x
1+
)-(x
2+
)=)=(x
1-x
2)+λ•
=(x
1-x
2)•
,
且函數(shù)f(x)在區(qū)間[1,+∞)上的單調(diào)遞增.∴f(x
1)-f(x
2)<0,
∴x
1•x
2-λ>0 對1≤x
1<x
2 恒成立,∴λ<x
1•x
2,再由1<x
1•x
2,可得0<λ≤1.…
分析:(1)函數(shù)的定義域為R,且f(-x)=-x+
=-f(x),可得函數(shù)為奇函數(shù).
(2)任取1≤x
1<x
2,計算f(x
1)-f(x
2)=(x
1-x
2)•
<0,可得 f(x
1)<f(x
2),從而得到函數(shù)f(x)在區(qū)間[1,+∞)上單調(diào)遞增.
(3)任取1≤x
1<x
2,根據(jù)f(x
1)-f(x
2)=(x
1-x
2)•
,且函數(shù)f(x)在區(qū)間[1,+∞)上的單調(diào)遞增,可得f(x
1)-f(x
2)<0,
即 λ<x
1•x
2 對1≤x
1<x
2 恒成立.再由1<x
1•x
2,可得λ的范圍.
點評:本題主要考查函數(shù)的奇偶性的判斷,函數(shù)的單調(diào)性的判斷和證明,屬于中檔題.