(2011•朝陽區(qū)二模)已知cosα=
3
5
,0<α<π,則tan(α+
π
4
)
=( 。
分析:由cosα及α的范圍,利用同角三角函數(shù)間的平方關(guān)系求出sinα的值,再利用同角三角函數(shù)間的基本關(guān)系弦化切求出tanα的值,然后把所求式子利用兩角和與差的正切函數(shù)公式化簡后,將tanα的值代入即可求出值.
解答:解:∵cosα=
3
5
,0<α<π,
∴sinα=
1-cos2α
=
4
5
,
∴tanα=
sinα
cosα
=
4
3
,
tan(α+
π
4
)=
1+tanα
1-tanα
=-7

故選D
點(diǎn)評:此題考查了兩角和與差的正切函數(shù)公式,同角三角函數(shù)間的基本關(guān)系,以及特殊角的三角函數(shù)值,熟練掌握公式及基本關(guān)系是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•朝陽區(qū)二模)已知全集U=R,集合A={x|2x>1},B={ x|
1
x-1
>0 }
,則A∩(CUB)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•朝陽區(qū)二模)設(shè)函數(shù)f(x)=lnx+(x-a)2,a∈R.
(Ⅰ)若a=0,求函數(shù)f(x)在[1,e]上的最小值;
(Ⅱ)若函數(shù)f(x)在[
12
,2]
上存在單調(diào)遞增區(qū)間,試求實(shí)數(shù)a的取值范圍;
(Ⅲ)求函數(shù)f(x)的極值點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•朝陽區(qū)二模)在長方形AA1B1B中,AB=2A1=4,C,C1分別是AB,A1B1的中點(diǎn)(如圖).將此長方形沿CC1對折,使平面AA1C1C⊥平面CC1B1B(如圖),已知D,E分別是A1B1,CC1的中點(diǎn).
(Ⅰ)求證:C1D∥平面A1BE;
(Ⅱ)求證:平面A1BE⊥平面AA1B1B;
(Ⅲ)求三棱錐C1-A1BE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•朝陽區(qū)二模)已知函數(shù)f(x)=2sinx•sin(
π
2
+x)-2sin2x+1
(x∈R).
(Ⅰ)求函數(shù)f(x)的最小正周期及函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若f(
x0
2
)=
2
3
x0∈(-
π
4
,
π
4
)
,求cos2x0的值.

查看答案和解析>>

同步練習(xí)冊答案