【題目】下列四個(gè)命題中,真命題的序號(hào)有__________.(寫出所有真命題的序號(hào))①若,則“”是“”成立的充分不必要條件;②命題“使得”的否定是 “均有”;③命題“若,則或”的否命題是“若,則”;④函數(shù)在區(qū)間上有且僅有一個(gè)零點(diǎn).
【答案】①②③④
【解析】
根據(jù)不等式性質(zhì)和反例可判斷出①正確;根據(jù)含量詞命題的否定可知②正確;根據(jù)絕對(duì)值不等式的解法可求得③正確;利用導(dǎo)數(shù)可得到在上單調(diào)遞增,再結(jié)合零點(diǎn)存在定理可確定零點(diǎn)個(gè)數(shù),知④正確.
① 由不等式性質(zhì)可知,充分條件成立
當(dāng)時(shí),若,則,必要條件不成立
“”是“”的充分不必要條件,①正確
②根據(jù)特稱命題的否定,可知原命題的否定為:,均有,②正確
③等價(jià)于或,解得:或,可知命題“若,則或”的否命題是“若,則”③正確
④,則當(dāng)時(shí), 在上單調(diào)遞增
又,
在上有且僅有一個(gè)零點(diǎn),④正確
本題正確結(jié)果:①②③④
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|y=lg(x-)},B={x|-cx<0,c>0},若AB,則實(shí)數(shù)c的取值范圍是( )
A.(0,1]B.[1,+∞)
C.(0,1)D.(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨機(jī)抽取了40輛汽車在經(jīng)過路段上某點(diǎn)時(shí)的車速(km/h),現(xiàn)將其分成六段: , , , , , ,后得到如圖所示的頻率分布直方圖.
(Ⅰ)現(xiàn)有某汽車途經(jīng)該點(diǎn),則其速度低于80km/h的概率約是多少?
(Ⅱ)根據(jù)直方圖可知,抽取的40輛汽車經(jīng)過該點(diǎn)的平均速度約是多少?
(Ⅲ)在抽取的40輛且速度在(km/h)內(nèi)的汽車中任取2輛,求這2輛車車速都在(km/h)內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代的《洛書》中記載著世界上最古老的一個(gè)幻方:如圖,將1,2,…,9填入的方格內(nèi),使三行,三列和兩條對(duì)角線上的三個(gè)數(shù)字之和都等于15.一般地,將連續(xù)的正整數(shù)填入個(gè)方格中,使得每行,每列和兩條對(duì)角線上的數(shù)字之和都相等,這個(gè)正方形叫做階幻方.記階幻方的對(duì)角線上的數(shù)字之和為,如圖三階幻方的,那么的值為__________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,已知M,N分別為線段BB1,A1C的中點(diǎn),MN⊥AA1,且MA1=MC.求證:
(1)MN平面ABC;
(2)平面A1MC⊥平面A1ACC1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出命題:(1)對(duì)立事件一定是互斥事件.(2)若事件滿足,則為對(duì)立事件.(3)把、、,3張紅桃牌隨機(jī)分給甲、乙、丙三人,每人1張,事件:“甲得紅桃”與事件:“乙得紅桃”是對(duì)立事件.(4)一個(gè)人打靶時(shí)連續(xù)射擊兩次,事件“至少有一次中靶”的對(duì)立事件是兩次都不中靶.其中正確的命題個(gè)數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是圓O的直徑,點(diǎn)C是圓O上異于A,B的點(diǎn),PO垂直于圓O所在的平面,且PO=OB=1.
(1)若D為線段AC的中點(diǎn),求證:AC⊥平面PDO;
(2)求三棱錐P-ABC體積的最大值;
(3)若,點(diǎn)E在線段PB上,求CE+OE的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是公差為2的等差數(shù)列,且成等比數(shù)列.?dāng)?shù)列滿足:,.
(Ⅰ)求數(shù)列,的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列的前n項(xiàng)和為,且,若對(duì),恒成立,求正整數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的前n項(xiàng)和為Tn,a1=﹣1,b1=1,a2+b2=2.
(1)若a3+b3=5,求{bn}的通項(xiàng)公式;
(2)若T3=21,求S3.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com