B
分析:把已知等式的左邊利用等比數(shù)列的性質(zhì)化簡,表示出k=a83,利用等比數(shù)列的性質(zhì)化簡選項(xiàng)A、C及D中的式子,得到結(jié)果不為k2;用等比數(shù)列的性質(zhì)化簡選項(xiàng)B中的式子a5a6a7a9a10a11,把表示出的式子利用冪的乘方的逆運(yùn)算變形,可得到關(guān)于a83的式子,把表示出的k代入,得到值為k2,從而得到本選項(xiàng)正確.
解答:、由題意得:a5a8a11=a83=k,
A、a6a7a8a9a10a11=a85a11≠a86≠k2,本選項(xiàng)錯(cuò)誤;
B、∵a5a8a11=a83=k,
∴a5a6a7a9a10a11
=(a5a11)•(a6a10)•(a7a9)
=a86=(a83)2=k2.本選項(xiàng)正確;
C、a7a8a9a10a11a12=a95a12≠a86≠k2,本選項(xiàng)錯(cuò)誤;
D、a8a9a10a11a12a13=a105a13≠a86≠k2,本選項(xiàng)錯(cuò)誤,
故選B
點(diǎn)評(píng):此題考查了等比數(shù)列的性質(zhì),以及冪的乘方的逆運(yùn)算,利用了轉(zhuǎn)化及整體代入的思想,熟練掌握等比數(shù)列的性質(zhì)是解本題的關(guān)鍵.