巳知⊙C的方程為(x-1)2+(y-1)2=1,直線L:4x+3y+m=0(其中m<-2)與x、y軸的正半軸分別相交于A、B兩點,點P(x,y)(xy>0)是線段AB上動點,如果直線L與圓C相切,則m的值等于________;log3x+log3y的最大值等于________.

-12    1
分析:由圓的方程找出圓心坐標和圓的半徑r,根據(jù)直線l與圓C相切,得到圓心到直線l的距離等于圓的半徑,列出關(guān)于m的方程,求出方程的解即可得到m的值;
由求出的m的值代入直線l的方程確定出直線l,然后用含x的式子表示出y,把表示出的y代入xy得到一個二次函數(shù),然后利用二次函數(shù)求最值的方法求出xy的最大值,然后利用對數(shù)函數(shù)的運算法則把所求的式子化簡后,根據(jù)3大于1得到對數(shù)函數(shù)為增函數(shù),把xy的最大值代入即可求出所求式子的最大值.
解答:由圓的方程得到圓心C(1,1),半徑r=1,
因為直線l與圓C相切,所以圓心到直線l的距離d=r=1,即=1,
解得:m=-2(與已知m<-2矛盾,舍去)或m=-12,
所以滿足題意的m的值為-12;
由3>1,得到對數(shù)函數(shù)為增函數(shù),
由4x+3y-12=0,得到y(tǒng)=-x+4,所以xy=-x2+4x,
當x=-即x=>0,y=2>0時,xy的最大值為3,
則log3x+log3y的最大值為log3xy=log33=1.
故答案為:-12;1.
點評:此題考查學生掌握直線與圓相切時滿足的條件,靈活運用點到直線的距離公式化簡求值,掌握二次函數(shù)求最大值的方法,是一道中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2011•湖南模擬)巳知⊙C的方程為(x-1)2+(y-1)2=1,直線L:4x+3y+m=0(其中m<-2)與x、y軸的正半軸分別相交于A、B兩點,點P(x,y)(xy>0)是線段AB上動點,如果直線L與圓C相切,則m的值等于
-12
-12
;log3x+log3y的最大值等于
1
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

巳知函數(shù)f(x)=cosx(x∈(0,2π))有兩個不同的零點x1、x2,方程f(x)=m有兩個不同的實根x3、x4.若把這四個數(shù)按從小到大排列構(gòu)成等差數(shù)列,則實數(shù)m的值為


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    數(shù)學公式

查看答案和解析>>

同步練習冊答案