精英家教網 > 高中數學 > 題目詳情

【題目】中國古典樂器一般按八音分類.八音是我國最早按樂器的制造材料來對樂器進行分類的方法,最先見于《周禮·春官·大師》,分為金、石、土、革、絲、木、匏(páo)、竹八音.其中金、石、木、革為打擊樂器,土、匏、竹為吹奏樂器,為彈撥樂器,現從打擊樂器、彈撥樂器中任取不同的兩音,含有彈撥樂器的概率為(

A.B.C.D.

【答案】B

【解析】

列出總的情況和滿足所求事件的情況即可

設事件從打擊樂器和彈撥樂器中任取兩音,含有彈撥樂器,

從打擊樂器和彈撥樂器中任取兩音的基本事件有:(金、石),(金,木),(金,革),

(金,絲),(石,木),(石,革),(石,絲),(木,革),(木,絲),(革,絲),共10種情況

含有彈撥樂器的基本事件有:(金,絲),(石,絲),(木,絲),(革,絲),共4種情況

所以

故選:B

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數fx,若存在x1,x2Rx1x2,使得fx1)=fx2)成立,則實數a的取值范圍是(

A.[3,+∞)B.3,+∞)C.(﹣∞,3D.(﹣∞,3]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為a元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯系,發(fā)生交通事故的次數越多,費率也就越高,具體浮動情況如下表:

交強險浮動因素和浮動費率比率表

浮動因素

浮動比率

上一年度未發(fā)生有責任道路交通事故

下浮10%

上兩年度未發(fā)生有責任道路交通事故

下浮

上三年度未發(fā)生有責任道路交通事故

下浮30%

上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故

0%

上一個年度發(fā)生兩次及兩次以上有責任不涉及死亡的道路交通事故

上浮10%

上一個年度發(fā)生有責任交通死亡事故

上浮30%

某機構為了解某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:

類型

A1

A2

A3

A4

A5

A6

數量

10

5

5

20

15

5

以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:

1)按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規(guī)定,,記為某同學家的一輛該品牌車在第四年續(xù)保時的費用,求的分布列與數學期望;(數學期望值保留到個位數字)

2)某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車,假設購進一輛事故車虧損5000元,一輛非事故車盈利10000:

①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;

②若該銷售商一次購進100(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數的兩個極值點分別為,若恒成立,則實數的取值范圍是_______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在棱柱中,底面為平行四邊形, ,且在底面上的投影恰為的中點.

1)過作與垂直的平面,交棱于點,試確定點的位置,并說明理由;

2)若點滿足,試求的值,使二面角.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓,左、右頂點分別為,,上、下頂點分別為,,且,為等邊三角形,過點的直線與橢圓軸右側的部分交于、兩點,為坐標原點.

1)求橢圓的標準方程;

2)求面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某次數學測驗共有12道選擇題,每道題共有四個選項,且其中只有一個選項是正確的,評分標準規(guī)定:每選對1道題得5分,不選或選錯得0分. 在這次數學測驗中,考生甲每道選擇題都按照規(guī)則作答,并能確定其中有9道題能選對;其余3道題無法確定正確選項,在這3道題中,恰有2道能排除兩個錯誤選項,另1題只能排除一個錯誤選項. 若考生甲做這3道題時,每道題都從不能排除的選項中隨機挑選一個選項作答,且各題作答互不影響.在本次測驗中,考生甲選擇題所得的分數記為

1)求的概率;

2)求的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,且經過點,一條直線與橢圓C交于,兩點,以為直徑的圓經過坐標原點

(1)求橢圓C的標準方程;

(2)求證:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)當時,求在區(qū)間的最大值;

2)若函數有兩個極值點,求證:.

查看答案和解析>>

同步練習冊答案