已知a,b為常數(shù),且a≠0,函數(shù)f(x)=-ax+b+axlnx,f(e)=2(e=2.71828…是自然對(duì)數(shù)的底數(shù))。
(I)求實(shí)數(shù)b的值;
(II)求函數(shù)f(x)的單調(diào)區(qū)間;
(III)當(dāng)a=1時(shí),是否同時(shí)存在實(shí)數(shù)m和M(m<M),使得對(duì)每一個(gè)t∈[m,M],直線y=t與曲線y=f(x)(x∈[,e])都有公共點(diǎn)?若存在,求出最小的實(shí)數(shù)m和最大的實(shí)數(shù)M;若不存在,說明理由。
解:(I)由
(II)由(I)可得
從而
,故:
(1)當(dāng)
(2)當(dāng)
綜上,當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為(0,1);
當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間為(0,1),
單調(diào)遞減區(qū)間為。
(III)當(dāng)a=1時(shí),
由(II)可得,當(dāng)x在區(qū)間內(nèi)變化時(shí),的變化情況如下表:
|
|
|
|
|
|
| - | 0 | + | ||
|
| 單調(diào)遞減 | 極小值1 | 單調(diào)遞增 | 2 |
又的值域?yàn)閇1,2]。
據(jù)經(jīng)可得,若,則對(duì)每一個(gè),直線y=t與曲線都有公
共點(diǎn)。
并且對(duì)每一個(gè),直線與曲線都沒有公共點(diǎn)。
綜上,當(dāng)a=1時(shí),存在最小的實(shí)數(shù)m=1,最大的實(shí)數(shù)M=2,使得對(duì)每一個(gè),直線y=t
與曲線都有公共點(diǎn)。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 | e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
x |
ax+b |
1 |
xn |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com