分析 (Ⅰ)根據(jù)正弦定理與等比數(shù)列的定義,得出sinAsinC=sin2B;
再利用三角恒等變換計(jì)算$\frac{1}{tanA}$+$\frac{1}{tanC}$的值;
(Ⅱ)利用正弦、余弦定理求出三角形的面積和a+c的值.
解答 解:(Ⅰ)△ABC中,$sinB=\frac{5}{13}$,且a,b,c成等比數(shù)列,
∴ac=b2,
即sinAsinC=sin2B=$\frac{25}{169}$;
∴$\frac{1}{tanA}$+$\frac{1}{tanC}$=$\frac{cosA}{sinA}$+$\frac{cosC}{sinC}$
=$\frac{sinCcosA+cosCsinA}{sinAsinC}$
=$\frac{sin(A+C)}{sinAsinC}$
=$\frac{sinB}{sinAsinC}$
=$\frac{\frac{5}{13}}{\frac{25}{169}}$
=$\frac{13}{5}$;
(Ⅱ)由accosB=12知cosB>0,
由sinB=$\frac{5}{13}$,得cosB=±$\frac{12}{13}$,(舍去負(fù)值)
從而b2=ac=$\frac{12}{cosB}$=13;
∴S△ABC=$\frac{1}{2}$acsinB=$\frac{1}{2}$×13×$\frac{5}{13}$=$\frac{5}{2}$;
由余弦定理,得
b2=(a+c)2-2ac-2accosB,
代入數(shù)值,得
13=(a+c)2-2×13×(1+$\frac{12}{13}$),
解得:a+c=3$\sqrt{7}$.
點(diǎn)評(píng) 本題考查了三角恒等變換與正弦、余弦定理的應(yīng)用問題,是綜合性題目.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{24}{25}$ | B. | -$\frac{16}{25}$ | C. | $\frac{24}{25}$ | D. | $\frac{12}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -3 | B. | 3 | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-$\frac{π}{2}$,$\frac{π}{2}$) | B. | (-π,-$\frac{π}{2}$) | C. | ($\frac{π}{2}$,π) | D. | ($\frac{3π}{2}$,2π) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com