已知函數(shù)f(x)=x+x3,x∈R.
(1)判斷函數(shù)f(x)的單調(diào)性,并證明你的結(jié)論;
(2)若a,b∈R,且a+b>0,試比較f(a)+f(b)與0的大。
解:(1)函數(shù)f(x)=x+x3,x∈R是增函數(shù),證明如下:
因為f′(x)=1+3x2>0恒成立,
所以函數(shù)f(x)=x+x3,x∈R是增函數(shù).
(2)由a+b>0,得a>-b,由(1)知f(a)>f(-b),
因為f(x)的定義域為R,定義域關(guān)于坐標原點對稱,
又f(-x)=(-x)+(-x)3=-x-x3=-(x+x3)=-f(x),
所以函數(shù)f(x)為奇函數(shù).
于是有f(-b)=-f(b),
所以f(a)>-f(b),從而f(a)+f(b)>0.
分析:(1)求出導(dǎo)數(shù)f′(x),利用導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系即可作出判斷;
(2)由a+b>0,得a>-b,由(1)f(x)的單調(diào)性可得f(a)>f(-b),判斷f(x)的奇偶性,根據(jù)奇偶性的性質(zhì)可得f(-b)與f(b)的關(guān)系,由此即可作出判斷;
點評:本題考查函數(shù)的奇偶性的應(yīng)用及利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,考查學(xué)生綜合運用所學(xué)知識分析問題解決問題的能力.