【題目】已知函數(shù).

1)當(dāng).

①求函數(shù)處的切線方程;

②定義其中,求;

2)當(dāng)時,設(shè),(為自然對數(shù)的底數(shù)),若對任意給定的,在上總存在兩個不同的,使得成立,求的取值范圍.

【答案】1)①;②8079;(2.

【解析】

1)①時,,,利用導(dǎo)數(shù)的幾何意義能求出函數(shù)處的切線方程.

②由,得,由此能求出的值.

2)根據(jù)若對任意給定的,,在區(qū)間,上總存在兩個不同的,使得成立,得到函數(shù)在區(qū)間,上不單調(diào),從而求得的取值范圍.

1)①∵,

,∴,∵,

所以切線方程為.

,

.

,則,.

因為①,

所以②,

由①+②得,所以.

所以.

2,當(dāng)時,函數(shù)單調(diào)遞增;

當(dāng)時,,函數(shù)單調(diào)遞減∵,

所以,函數(shù)上的值域為.

因為, ,

,①

此時,當(dāng) 變化時的變化情況如下:

0

+

單調(diào)減

最小值

單調(diào)增

,

,

∴對任意給定的,在區(qū)間上總存在兩個不同的,

使得成立,當(dāng)且僅當(dāng)滿足下列條件

,即

,

,

當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,,函數(shù)單調(diào)遞減所以,對任意,有,即②對任意恒成立.

由③式解得:

綜合①④可知,當(dāng)時,對任意給定的,

上總存在兩個不同的,使成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、FEF=,則下列結(jié)論中錯誤的是(

A.ACBEB.EF平面ABCD

C.三棱錐A-BEF的體積為定值D.異面直線AE,BF所成的角為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,橢圓的左、右焦點分別為,離心率.的直線與橢圓相交于兩點,且的周長為.

1)求橢圓的方程;

2)若點位于第一象限,且,求的外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了慶祝第一個農(nóng)民豐收節(jié),西部山區(qū)某村統(tǒng)計了自2011年以來每年的年總收入,其中2018年統(tǒng)計的是1月到8月的總收入,統(tǒng)計結(jié)果如圖所示.根據(jù)圖形,下列四個判斷中,錯誤的是(

A.2012年起,年總收入逐年增加B.2017年的年總收入在2016年的基礎(chǔ)上翻了番

C.年份數(shù)與年總收入成正相關(guān)D.由圖可預(yù)測從2014年起年總收入增長加快

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正所在平面垂直平面,且邊在平面內(nèi),過、分別作兩個平面、(與正所在平面不重合),則以下結(jié)論錯誤的是( )

A.存在平面與平面,使得它們的交線和直線所成角為

B.直線與平面所成的角不大于

C.平面與平面所成銳二面角不小于

D.平面與平面所成銳二面角不小于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】ABC中,已知點A5,-2,B7,3,且邊AC的中點M在y軸上,邊BC的中點N在x軸上,求:

(1)頂點C的坐標(biāo);

(2)直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,焦點為,直線交拋物線兩點,是線段的中點,過軸的垂線交拋物線于點.

1)求拋物線的焦點坐標(biāo);

2)若拋物線上有一點到焦點的距離為,求此時的值;

3)是否存在實數(shù),使是以為直角頂點的直角三角形?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在矩形中,,.將矩形沿對角線翻折形成四面體,若該四面體內(nèi)接于球,則下列說法錯誤的是(

A.四面體的體積的最大值是B.球心為線段的中點

C.的表面積隨二面角的變化而變化D.的表面積為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是正四面體的面內(nèi)一動點,為棱中點,記與平面成角為定值,若點的軌跡為一段拋物線,則

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案