已知數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)一切正整數(shù)n,點(diǎn)Pn(n,Sn)都在函數(shù)f(x)=x2+2x的圖象上,且過(guò)點(diǎn)Pn(n,Sn)的切線(xiàn)的斜率為kn.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列{bn}的前n項(xiàng)和為T(mén)n;
(Ⅲ)設(shè)Q={x|x=kn,n∈N*},R={x|x=2an,n∈N*},等差數(shù)列{cn}的任一項(xiàng)cn∈Q∩R,其中c1是Q∩R中的最小數(shù),110<c10<115,求{cn}的通項(xiàng)公式.
解:(Ⅰ)因?yàn)辄c(diǎn)都在函數(shù)的圖象上 所以 當(dāng)時(shí), 2分 當(dāng)時(shí), (*) 3分 令,,也滿(mǎn)足(*)式 所以,數(shù)列的通項(xiàng)公式是. 4分 (Ⅱ)由求導(dǎo)可得
∵過(guò)點(diǎn)的切線(xiàn)的斜率為 ∴ 5分 又∵ ∴ 6分 ∴①由①可得 ② 、伲诳傻
∴ 8分 (Ⅲ)∵, ∴ 10分 又∵,其中是中的最小數(shù), ∴, 11分 ∴(的公差是4的倍數(shù)!) 又∵ ∴解得 ∴ 10分 設(shè)等差數(shù)列的公差為 則 ∴ 所以,的通項(xiàng)公式為. 12分 |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A、16 | B、8 | C、4 | D、不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com