精英家教網 > 高中數學 > 題目詳情


某超市為了解顧客的購物量及結算時間等信息,安排一名員工隨機收集了在該超市購物的100位顧客的相關數據,如下表所示.

一次購物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顧客數(人)

30
25

10
結算時間(分鐘/人)
1
1.5
2
2.5
3
已知這100位顧客中的一次購物量超過8件的顧客占55%.
(1)確定的值,并求顧客一次購物的結算時間的分布列與數學期望;
(2)若某顧客到達收銀臺時前面恰有2位顧客需結算,且各顧客的結算相互獨立,求該顧客結算前的等候時間不超過分鐘的概率.(注:將頻率視為概率)

(1)
的分布為

  X
1
1.5
2
2.5
3
P





X的數學期望為.
(2)

解析試題分析:(1)由已知,得所以
該超市所有顧客一次購物的結算時間組成一個總體,
所以收集的100位顧客一次購物的結算時間可視為總體的一個容量隨機樣本,
將頻率視為概率得

 
5分
所以的分布為

  X
1
1.5
2
2.5
3
P





X的數學期望為
.                          9分
(2)記A為事件“該顧客結算前的等候時間不超過2.5分鐘”,為該顧客前面第位顧客的結算時間,則
.
由于顧客的結算相互獨立,且的分布列都與X的分布列相同,所以

.
故該顧客結算前的等候時間不超過2.5分鐘的概率為.                              14分
考點:本小題主要考查隨機變量的分布列、期望和相互獨立事件同時發(fā)生的概率.
點評:求解離散型隨機變量問題,首先要找出隨機變量的取值,其次要準確求出各個概率,可以用概率和是否為1檢驗求解是否正確.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

某學校為調查高二年級學生的身高情況,按隨機抽樣的方法抽取200名學生,得到男生身高情況的頻率分布直方圖(圖(1))和女生身高情況的頻率分布直方圖(圖(2)).已知圖(1)中身高在170~175cm的男生人數有48人.
(Ⅰ)在抽取的學生中,身高不超過165cm的男、女生各有多少人?并估計男生的平均身高。
(Ⅱ)在上述200名學生中,從身高在170~175cm之間的學生按男、女性別分層抽樣的方法,抽出7人,從這7人中選派4人當旗手,求4人中至少有一名女生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2012年3月2日,江蘇衛(wèi)視推出全新益智答題類節(jié)目《一站到底》,甲、乙兩人報名參加《一站到底》面試的初試選拔,已知在備選的10道試題中,甲能答對其中的6題,乙能答對其中的8題.規(guī)定每次搶答都從備選題中隨機抽出3題進行測試,至少答對2題初試才能通過.
(Ⅰ)求甲答對試題數ξ的概率分布及數學期望;
(Ⅱ)求甲、乙兩人至少有一人初試通過的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

將一個半徑適當的小球放入如圖所示的容器最上方的入口處,小球將自由下落.小球在
下落的過程中,將3次遇到黑色障礙物,最后落入袋或袋中.已知小球每次遇到黑色障礙物時,向左、右兩邊下落的概率都是
(Ⅰ)求小球落入袋中的概率;
(Ⅱ)在容器入口處依次放入4個小球,記為落入袋中的小球個數,試求的概率和的數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某人上樓梯,每步上一階的概率為,每步上二階的概率為,設該人從臺階下的平臺開始出發(fā),到達第階的概率為.
(1)求;;
(2)該人共走了5步,求該人這5步共上的階數ξ的數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

張師傅駕車從公司開往火車站,途徑4個公交站,這四個公交站將公司到火車站
分成5個路段,每個路段的駕車時間都是3分鐘,如果遇到紅燈要停留1分鐘,假設他在各
交通崗是否遇到紅燈是相互獨立的,并且概率都是
(1)求張師傅此行時間不少于16分鐘的概率
(2)記張師傅此行所需時間為Y分鐘,求Y的分布列和均值

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某商場為吸引顧客消費推出一項優(yōu)惠活動,活動規(guī)則如下:消費額每滿100元可轉動如圖所示的轉盤一次,并獲得相應金額的返券,假定指針等可能地停在任一位置. 若指針停在區(qū)域返券60元;停在區(qū)域返券30元;停在區(qū)域不返券. 例如:消費218元,可轉動轉盤2次,所獲得的返券金額是兩次金額之和.

(1)若某位顧客消費128元,求返券金額不低于30元的概率;
(2)若某位顧客恰好消費280元,并按規(guī)則參與了活動,他獲得返券的金額記為(元),求隨機變量的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

一車間生產A, B, C三種樣式的LED節(jié)能燈,每種樣式均有10W和30W兩種型號,某天的產量如右表(單位:個)。按樣式分層抽樣的方法在這個月生產的燈泡中抽取100個,其中有A樣式燈泡25個.

型號
A樣式
B樣式
C樣式
10W
2000
z
3000
30W
3000
4500
5000
 
(1)求z的值;
(2)用分層抽樣的方法在A樣式燈泡中抽取一個容量為5的樣本,從這個樣本中任取2個燈泡,求至少有1個10W的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)袋中有大小相同的紅、黃兩種顏色的球各1個,從中任取1只,有放回地抽取3次.求:
(Ⅰ)3只全是紅球的概率;
(Ⅱ)3只顏色全相同的概率;
(Ⅲ)3只顏色不全相同的概率.

查看答案和解析>>

同步練習冊答案