(本小題12分)
已知橢圓,斜率為的直線交橢圓兩點(diǎn),且點(diǎn)在直線的上方,
(1)求直線軸交點(diǎn)的橫坐標(biāo)的取值范圍;
(2)證明:的內(nèi)切圓的圓心在一條直線上.
(1)
(2)見解析
(1)設(shè)直線l的方程為,然后求出它與x軸交點(diǎn)橫坐標(biāo),再讓直線l的方程與橢圓方程聯(lián)立,和點(diǎn)P在l的上方兩個條件確定m的取值范圍,然后轉(zhuǎn)化為函數(shù)值域問題來解決。
(2) 先由,得到,這說明了的角平分線與x軸垂直,問題到此基本得以解決。
解:(1)
(2)
,又點(diǎn)在直線的上方,故的角平分線是平行于軸的直線,
的內(nèi)切圓圓心在直線上.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分
已知橢圓的離心率為,以原點(diǎn)為圓心,
橢圓的短半軸長為半徑的圓與直線相切.
⑴求橢圓C的方程;
⑵設(shè),是橢圓上關(guān)于軸對稱的任意兩個不同的點(diǎn),連結(jié)交橢圓
于另一點(diǎn),求直線的斜率的取值范圍;
⑶在⑵的條件下,證明直線軸相交于定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的一個焦點(diǎn)是,且截直線所得弦長為,求該橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,橢圓
(1)若一直線與橢圓交于兩不同點(diǎn),且線段恰以點(diǎn)為中點(diǎn),求直線的方程;
(2)若過點(diǎn)的直線(非軸)與橢圓相交于兩個不同點(diǎn)試問在軸上是否存在定點(diǎn),使恒為定值?若存在,求出點(diǎn)的坐標(biāo)及實(shí)數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直線與雙曲線的左右兩支分別交于、兩點(diǎn),與雙曲線的右準(zhǔn)線相交于點(diǎn),為右焦點(diǎn),若,又,則實(shí)數(shù)的值為
A.B.1C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的長軸長是短軸長的2倍且經(jīng)過點(diǎn)A(2,0),求橢圓的標(biāo)準(zhǔn)方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知A、B、C是橢圓上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為,BC過橢圓m的中心,且

(1)求橢圓的方程;
(2)過點(diǎn)的直線l(斜率存在時(shí))與橢圓m交于兩點(diǎn)P,Q,
設(shè)D為橢圓m與y軸負(fù)半軸的交點(diǎn),且,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分16分)
已知橢圓的左、右頂點(diǎn)分別A、B,橢圓過點(diǎn)(0,1)且離心率.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓上異于A,B兩點(diǎn)的任意一點(diǎn)P作PH⊥軸,H為垂足,延長HP到點(diǎn)Q,且PQ=HP,過點(diǎn)B作直線軸,連結(jié)AQ并延長交直線于點(diǎn)M,N為MB的中點(diǎn),試判斷直線QN與以AB為直徑的圓O的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知傾斜角的直線過橢圓的右焦點(diǎn)F交橢圓于A、B兩點(diǎn),P為右準(zhǔn)線上任意一點(diǎn),則為。ā。
A.鈍角;    。拢苯牵弧    C.銳角;     D.都有可能;

查看答案和解析>>

同步練習(xí)冊答案