如圖,在四棱錐P-ABCD中,底面為直角梯形ABCD,AD∥BC,∠BAD=90O,PA⊥底面ABCD,且PA=AD=AB=2BC,M,N分別為PC,PB的中點(diǎn).(1)求證:PB⊥DM;(2)求CD與平面ADMN所成角的正弦值;(3)在棱PD上是否存在點(diǎn)E,且PE∶ED=λ,使得二面角C-AN-E的平面角為60o.若存在求出λ值,若不存在,請(qǐng)說(shuō)明理由。
(1)建系,利用,證明PB⊥DM
(2)
(3)先假設(shè)存在,求出法向量,可以算出無(wú)解,所以不存在符合要求的解.

試題分析:(1)如圖以A為原點(diǎn)建立空間直角坐標(biāo)系

A(0,0,0),B(2,0,0),
C(2,1,0),D(0,2,0)
M(1,,1),N(1,0,1),
E(0,m,2-m),P(0,0,2)
(2,0,-2),(1,-,1),
="0"
(2)=(-2,1,0)平面ADMN法向量=(x,y,z),
=(0,2,0),=(1,0,1) ,
所以 ,即 ,解得=(1,0,-1),
設(shè)CD與平面ADMN所成角α,則.
(3)設(shè)平面ACN法向量=(x,y,z),
所以,解得=(1,-2,-1),
設(shè),所以,
同理可以求出平面AEN的法向量
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824004157340985.png" style="vertical-align:middle;" />,所以,
所以 ,
此方程無(wú)解,所以不存在符合要求的點(diǎn).
點(diǎn)評(píng):解決立體幾何問(wèn)題,可以建立空間向量,但是證明時(shí)也要根據(jù)相應(yīng)的判定定理和性質(zhì)定理,定理中要求的條件要一一列舉出來(lái),另外還要注意各種角的取值范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知三棱錐O-ABC的側(cè)棱OA,OB,OC兩兩垂直,且OA=2,OB=3,OC=4,E是OC的中點(diǎn).

(1)求異面直線BE與AC所成角的余弦值;
(2)求二面角A-BE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,是棱長(zhǎng)為1的正方體,四棱錐中,平面,。

(Ⅰ)求證:
(Ⅱ)求直線與平面所成角的正切值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知兩個(gè)正四棱錐P-ABCD與Q-ABCD的高分別為1和2,AB=4.

(Ⅰ)證明PQ⊥平面ABCD;
(Ⅱ)求異面直線AQ與PB所成的角;
(Ⅲ)求點(diǎn)P到平面QAD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分l2分)
如圖,在多面體ABCDEF中,ABCD為菱形,ABC=60,EC面ABCD,F(xiàn)A面ABCD,G為BF的中點(diǎn),若EG//面ABCD.

(1)求證:EG面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分13分)如圖所示,四棱錐中,底面是邊長(zhǎng)為2的菱形,是棱上的動(dòng)點(diǎn).

(Ⅰ)若的中點(diǎn),求證://平面;
(Ⅱ)若,求證:;
(III)在(Ⅱ)的條件下,若,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正方體中,下列結(jié)論錯(cuò)誤的是
A.∥平面B.平面
C.D.異面直線所成的角是45º

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知直三棱柱中,, ,若中點(diǎn).
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)a、b是兩條不重合的直線,是兩個(gè)不重合的平面,則下列命題中不正確的一個(gè)是
A.若B.若,則
C.若D.若,則

查看答案和解析>>

同步練習(xí)冊(cè)答案