【題目】把半橢圓與圓弧合成的曲線(xiàn)稱(chēng)作曲圓,其中F為半橢圓的右焦點(diǎn),A是圓弧x軸的交點(diǎn),過(guò)點(diǎn)F的直線(xiàn)交曲圓P,Q兩點(diǎn),則的周長(zhǎng)取值范圍為______

【答案】

【解析】

首先判斷直線(xiàn)PQ的斜率不能為0,設(shè)直線(xiàn)PQ的傾斜角為,,求得F,A的坐標(biāo),以及圓的圓心和半徑,求得直線(xiàn)PQ經(jīng)過(guò)圓與y軸的交點(diǎn)B,C的傾斜角,分別討論當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),P,Q的位置,結(jié)合橢圓的定義和圓的定義和等腰三角形的性質(zhì),可得的周長(zhǎng)的范圍.

解:顯然直線(xiàn)PQ的斜率不能為0,設(shè)直線(xiàn)PQ的傾斜角為,,

由半橢圓方程為可得,

圓弧方程為:的圓心為,半徑為2,

恰為橢圓的左焦點(diǎn),,

y軸的兩個(gè)交點(diǎn)為,,

當(dāng)直線(xiàn)PQ經(jīng)過(guò)B時(shí),,即有;

當(dāng)直線(xiàn)PQ經(jīng)過(guò)C時(shí),,即有

當(dāng)時(shí),Q、P分別在圓弧:、

半橢圓上,

為腰為2的等腰三角形,則,

的周長(zhǎng);

當(dāng)時(shí),PQ分別在圓。

半橢圓上,

為腰為2的等腰三角形,且,

的周長(zhǎng)

當(dāng)時(shí),P、Q在半橢圓上,

的周長(zhǎng)

綜上可得,的周長(zhǎng)取值范圍為

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓x2y2x6y3=0與直線(xiàn)x2y3=0的兩個(gè)交點(diǎn)為P、Q,求以PQ為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)有下列四個(gè)命題:

:若,則

:若,則;

:“”是“為奇函數(shù)”的充要條件;

:“等比數(shù)列中,”是“等比數(shù)列是遞減數(shù)列”的充要條件.

其中,真命題的是  

A. ,B. ,C. ,D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次數(shù)學(xué)知識(shí)比賽中共有6個(gè)不同的題目,每位同學(xué)從中隨機(jī)抽取3個(gè)題目進(jìn)行作答,已知這6個(gè)題目中,甲只能正確作答其中的4個(gè),而乙正確作答每個(gè)題目的概率均為,且甲、乙兩位同學(xué)對(duì)每個(gè)題目的作答都是相互獨(dú)立、互不影響的.

(1)求甲、乙兩位同學(xué)總共正確作答3個(gè)題目的概率;

(2)若甲、乙兩位同學(xué)答對(duì)題目個(gè)數(shù)分別是,,由于甲所在班級(jí)少一名學(xué)生參賽故甲答對(duì)一題得15分,乙答對(duì)一題得10分,求甲乙兩人得分之和的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形中,,,過(guò)點(diǎn)作的垂線(xiàn),交的延長(zhǎng)線(xiàn)于點(diǎn),.連結(jié),交于點(diǎn),如圖1,將沿折起,使得點(diǎn)到達(dá)點(diǎn)的位置,如圖2.

(1)證明:平面平面;

(2)若的中點(diǎn),的中點(diǎn),且平面平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面四邊形中,等邊三角形,,以為折痕將折起,使得平面平面

(1)設(shè)的中點(diǎn),求證:平面

(2)若與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù).

(1)討論的單調(diào)性;

(2)當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)一位高三班主任對(duì)本班50名學(xué)生學(xué)習(xí)積極性和對(duì)待班級(jí)工作的態(tài)度進(jìn)行調(diào)查,得到的統(tǒng)計(jì)數(shù)據(jù)如表所示:

積極參加班級(jí)工作

不積極參加班級(jí)工作

合計(jì)

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性不高

6

19

25

合計(jì)

24

26

50

如果隨機(jī)調(diào)查這個(gè)班的一名學(xué)生,求事件A:抽到不積極參加班級(jí)工作且學(xué)習(xí)積極性不高的學(xué)生的概率;

若不積極參加班級(jí)工作且學(xué)習(xí)積極性高的7名學(xué)生中有兩名男生,現(xiàn)從中抽取兩名學(xué)生參加某項(xiàng)活動(dòng),請(qǐng)用字母代表不同的學(xué)生列舉出抽取的所有可能結(jié)果;

的條件下,求事件B:兩名學(xué)生中恰有1名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓過(guò)點(diǎn),且與圓外切于點(diǎn),過(guò)點(diǎn)作圓的兩條切線(xiàn),,切點(diǎn)為,

1)求圓的標(biāo)準(zhǔn)方程;

2)試問(wèn)直線(xiàn)是否恒過(guò)定點(diǎn)?若過(guò)定點(diǎn),請(qǐng)求出定點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案