(本小題共12分)已知曲線上任意一點P到兩個定點F1(-,0)和F2(,0)的距離之和為4.
(1)求曲線的方程;
(2)設(shè)過(0,-2)的直線與曲線交于C、D兩點,且為坐標(biāo)原點),求直線的方程.
解:(1)根據(jù)橢圓的定義,可知動點的軌跡為橢圓, ……………………1分
其中,,則. ……………………………2分
所以動點M的軌跡方程為.……………………………………4分
(2)當(dāng)直線的斜率不存在時,不滿足題意.………………………………5分
當(dāng)直線的斜率存在時,設(shè)直線的方程為,設(shè),,∵,∴.………………6分
∵,,
∴.
∴ .………… ① ……………7分
由方程組得.
則,,………………………………9分
代入①,得.
即,解得,或.…………………………………11分
所以,直線的方程是或.…………………12分
【解析】略
科目:高中數(shù)學(xué) 來源:2013屆甘肅省高三第二次檢測理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題共12分)
已知函數(shù)f(x)=2x--aln(x+1),a∈R.(1)若a=-4,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求y=f(x)的極值點(即函數(shù)取到極值時點的橫坐標(biāo)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題共12分)
已知函數(shù)
(Ⅰ)求的最小正周期和最小值;
(Ⅱ)已知,,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆黑龍江省高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題
(本小題共12分)
已知函數(shù)的最小值不小于, 且.
(1)求函數(shù)的解析式;
(2)函數(shù)在的最小值為實數(shù)的函數(shù),求函數(shù)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆黑龍江省高一上學(xué)期期中考試數(shù)學(xué)試卷 題型:解答題
(本小題共12分)
已知集合,集合
(1)求集合A;
(2)若,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com