如圖,AB是⊙O的直徑 ,AC是弦 ,∠BAC的平分線AD交⊙O于點D,DE⊥AC,交AC的延長線于點E.OE交AD于點F.
(Ⅰ)求證:DE是⊙O的切線;
(Ⅱ)若,求的值.
(Ⅰ)先證DE⊥OD (Ⅱ)
【解析】
試題分析:(1)連結(jié)OD,可得
∴OD∥AE 又AE⊥DE ∴DE⊥OD,又OD為半徑,∴DE是的切線
(2)過D作DH⊥AB于H,則有
Cos∠DOH=∠CAB=
設(shè)OD=5x,則AB=10x,OH=3x,DH=4x ∴AH=8x AD2=80x2
由△AED∽△ADB可得 AD2=AE·AB=AE·10x ∴AE=8X
又由△AEF∽△DOF 可得AF∶DF= AE∶OD =;∴=
考點:切線的判定與性質(zhì);角平分線的定義;平行線的性質(zhì);等腰三角形的性質(zhì);勾股定理;圓周角定理;相似三角形的判定與性質(zhì);銳角三角函數(shù)的定義.
點評:本題綜合考查了等腰三角形的性質(zhì),平行線的性質(zhì),切線的性質(zhì)和判定,相似三角形的性質(zhì)和判定,銳角三角函數(shù),勾股定理,角平分線定義等知識點的運用,題目較好,綜合性強,有一定的難度,主要培養(yǎng)學(xué)生綜合運用所學(xué)知識進行推理的能力.
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:南充高中2008-2009學(xué)年高二下學(xué)期第四次月考數(shù)學(xué)試題(理) 題型:044
如圖,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點C為圓周上異于A、B的一點.
(1)若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.那么四面體P-ABC的直度為多少?說明理由;
(2)在四面體P-ABC中,AP=AB=1,設(shè).若動點M在四面體P-ABC表面上運動,并且總保持PB⊥AM.設(shè)為動點M的軌跡圍成的封閉圖形的面積關(guān)于角的函數(shù),求取最大值時,二面角A-PB-C的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省南充高中2008-2009學(xué)年高二下學(xué)期第四次月考數(shù)學(xué)文 題型:044
如圖,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點C為圓周上異于A、B的一點.
(1)若一個n面體中有m個面是直角三角形,則稱這個n面體的直度為.那么四面體P-ABC的直度為多少?說明理由;
(2)如圖,若四面體P-ABC中,AP=AB=1,AE⊥PB,垂足為E,AF⊥PC,垂足為F.設(shè)∠EAF=,為△AEF面積的函數(shù),求取最大值時二面角A-PB-C的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省南充高中08-09學(xué)年高二下學(xué)期第四次月考(理) 題型:解答題
如圖甲,已知PA垂直于⊙O所在平面,AB是⊙O的直徑,點C為圓周上異于A、B的一點.
(1)若一個面體中有個面是直角三角形,則稱這個面體的直度為.那么四面體的直度為多少?說明理由;
(2)在四面體中,,設(shè).若動點在四面體 表面上運動,并且總保持.設(shè)為動點的軌跡圍成的封閉圖形的面積關(guān)于角的函數(shù),求取最大值時,二面角的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com