某人進行射擊,每次中靶的概率均為0.8,現(xiàn)規(guī)定:若中靶就停止射擊,若沒中靶,則繼續(xù)射擊,如果只有3發(fā)子彈,則射擊數(shù)X的均值為________.(填數(shù)字)

 

1.24

【解析】射擊次數(shù)X的分布列為

X

1

2

3

P

0.8

0.16

0.04

∴E(X)=0.8×1+0.16×2+0.04×3=1.24.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十章第4課時練習卷(解析版) 題型:填空題

下列事件:①若x∈R,則x2<0;②沒有水分,種子不會發(fā)芽;③拋擲一枚均勻的硬幣,正面向上;④若兩平面α∥β,mα且nβ,則m∥n.

其中________是必然事件,________是不可能事件,________是隨機事件.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十章第1課時練習卷(解析版) 題型:填空題

執(zhí)行如圖所示的程序框圖,輸出的S=________.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十一章第6課時練習卷(解析版) 題型:解答題

設袋子中裝有a個紅球,b個黃球,c個藍球,且規(guī)定:取出一個紅球得1分,取出一個黃球得2分,取出一個藍球得3分.

(1)當a=3,b=2,c=1時,從該袋子中任取(有放回,且每球取到的機會均等)2個球,記隨機變量ξ為取出此兩球所得分數(shù)之和,求ξ分布列;

(2)從該袋子中任取(且每球取到的機會均等)1個球,記隨機變量η為取出此球所得分數(shù).若E(η)=,V(η)=,求a∶b∶c.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十一章第6課時練習卷(解析版) 題型:解答題

某工藝廠開發(fā)一種新工藝品,頭兩天試制中,該廠要求每位師傅每天制作10件,該廠質檢部每天從每位師傅制作的10件產(chǎn)品中隨機抽取4件進行檢查,若發(fā)現(xiàn)有次品,則當天該師傅的產(chǎn)品不能通過.已知李師傅第一天、第二天制作的工藝品中分別有2件、1件次品.

(1)求兩天中李師傅的產(chǎn)品全部通過檢查的概率;

(2)若廠內對師傅們制作的工藝品采用記分制,兩天全不通過檢查得0分,通過1天、2天分別得1分、2分,求李師傅在這兩天內得分的數(shù)學期望.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十一章第5課時練習卷(解析版) 題型:解答題

甲、乙兩支足球隊鏖戰(zhàn)90分鐘踢成平局,加時賽30分鐘后仍成平局,現(xiàn)決定各派5名隊員,每人射一點球決定勝負,設甲、乙兩隊每個隊員的點球命中率均為0.5.

(1)不考慮乙隊,求甲隊僅有3名隊員點球命中,且其中恰有2名隊員連續(xù)命中的概率;

(2)求甲、乙兩隊各射完5個點球后,再次出現(xiàn)平局的概率.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十一章第5課時練習卷(解析版) 題型:解答題

某商場為促銷設計了一個抽獎模型,一定數(shù)額的消費可以獲得一張抽獎券,每張抽獎券可以從一個裝有大小相同的4個白球和2個紅球的口袋中一次性摸出3個球,至少摸到一個紅球則中獎.

(1)求一次抽獎中獎的概率;

(2)若每次中獎可獲得10元的獎金,一位顧客獲得兩張抽獎券,求兩次抽獎所得的獎金額之和X(元)的概率分布.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第十一章第4課時練習卷(解析版) 題型:填空題

從個位數(shù)與十位數(shù)之和為奇數(shù)的兩位數(shù)中任取一個,其個位數(shù)為0的概率是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第九章第9課時練習卷(解析版) 題型:填空題

已知拋物線關于x軸對稱,它的頂點在坐標原點O,并且經(jīng)過點M(2,y0).若點M到該拋物線焦點的距離為3,則OM=________.

 

查看答案和解析>>

同步練習冊答案