設a,b均為正數(shù),
(Ⅰ)求證:
ab
2
1
a
+
1
b
;
(Ⅱ)如果依次稱
a+b
2
ab
、
2
1
a
+
1
b
分別為a,b兩數(shù)的算術平均數(shù)、幾何平均數(shù)、調和平均數(shù).如右圖,C為線段AB上的點,令AC=a,CB=b,O為AB的垂線交半圓于D.連結OD,AD,BD.過點C作OD的垂線,垂足為E.圖中線段OD的長度是a,b的算術平均數(shù),請分別用圖中線段的長度來表示a,b兩數(shù)的幾何平均數(shù)和調和平均數(shù),并說明理由.
分析:(I)由于a,b均為正數(shù),根據(jù)基本不等式,可得
1
a
+
1
b
2
1
a
×
1
b
=
1
ab
,即可得出
ab
2
1
a
+
1
b
;
(II)在直角三角形中,由DC為高,根據(jù)射影定理可得CD2=AC•CB,變形兩邊開方,得到CD長度為a,b的幾何平均數(shù);根據(jù)在直角三角形OCD中,由射影定理可得CD2=DE•CB,得到DE的長,再由DC≥DE,得到結果.
解答:解:(I)證明:由于a,b均為正數(shù),根據(jù)基本不等式,可得
1
a
+
1
b
2
1
a
×
1
b
=
1
ab
,即
ab
2
1
a
+
1
b
,
當且僅當a=b時,等號成立.
(II)在Rt△ADB中DC為高,則由射影定理可得CD2=AC•CB,
∴CD=
ab
,即CD長度為a,b的幾何平均數(shù),
在直角三角形OCD中,由射影定理可得CD2=DE•OD,
∴DE=
DC2
OD
=
ab
a+b
2
=
2
1
a
+
1
b
,由DC≥DE,得
ab
2
1
a
+
1
b
,當且僅當a=b時,等號成立,
∴線段DE的長度分別為a,b的調和平均數(shù).
點評:本題是一個新定義問題,解題過程中主要應用直角三角形邊之間的比例關系,得到比例式,本題是一個平面幾何與代數(shù)中的平均數(shù)結合的問題,是一個綜合題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

19、設a,b均為正數(shù),且a≠b,求證:a3+b3>a2b+ab2

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年海南省三亞一中高二(下)期中數(shù)學試卷B(文科)(解析版) 題型:解答題

設a,b均為正數(shù),且a≠b,求證:a3+b3>a2b+ab2

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年陜西省咸陽市高二(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題

設a,b均為正數(shù),
(Ⅰ)求證:;
(Ⅱ)如果依次稱、、分別為a,b兩數(shù)的算術平均數(shù)、幾何平均數(shù)、調和平均數(shù).如右圖,C為線段AB上的點,令AC=a,CB=b,O為AB的垂線交半圓于D.連結OD,AD,BD.過點C作OD的垂線,垂足為E.圖中線段OD的長度是a,b的算術平均數(shù),請分別用圖中線段的長度來表示a,b兩數(shù)的幾何平均數(shù)和調和平均數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高考數(shù)學復習:6.6 直接證明與間接證明(解析版) 題型:解答題

設a,b均為正數(shù),且a≠b,求證:a3+b3>a2b+ab2

查看答案和解析>>

同步練習冊答案