精英家教網 > 高中數學 > 題目詳情
7.在極坐標系中,曲線C的方程為$ρ=4(cosθ+sinθ)-\frac{6}{ρ}$,以極點O為原點,極軸為x軸的正半軸建立平面直角坐標系.
(1)求曲線C的參數方程;
(2)在直角坐標系中,點M(x,y)是曲線C上一動點,求x+y的最大值,并求此時點M的直角坐標.

分析 (1)先求出C的直角坐標方程,再求曲線C的參數方程;
(2)利用C的參數方程,結合三角函數知識,求x+y的最大值,并求此時點M的直角坐標.

解答 解:(1)由曲線C的方程為$ρ=4(cosθ+sinθ)-\frac{6}{ρ}$,得ρ2=4ρcosθ+4ρsinθ-6,
即x2+y2-4x-4y+6=0,即(x-2)2+(y-2)2=2.
即曲線C是以點為圓心(2,2),以$\sqrt{2}$為半徑的圓,
則圓的參數方程為$\left\{\begin{array}{l}{x=2+\sqrt{2}cosθ}\\{y=2+\sqrt{2}sinθ}\end{array}\right.$(θ為參數).
(2)x+y=4+$\sqrt{2}$cosθ+$\sqrt{2}$sinθ=4+2sin(θ+$\frac{π}{4}$).
于是當θ=$\frac{π}{4}$時,(x+y)max=4+2=6,
此時$\left\{{\begin{array}{l}{x=2+\sqrt{2}cos\frac{π}{4}=3}\\{y=2+\sqrt{2}sin\frac{π}{4}=3}\end{array}}\right.$,即M(3,3).

點評 本題考查三種方程的互化,考查參數方程的運用,考查三角函數知識,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

17.給出下列說法,其中正確的個數是( 。
①命題“若α=$\frac{π}{6}$,則sinα=$\frac{1}{2}$”的否命題是假命題;
②命題p:?x0∈R,使sinx0>1,則¬p:?x∈R,sinx≤1;
③“φ=$\frac{π}{2}$+2kπ(k∈Z)”是“函數y=sin(2x+φ)為偶函數”的充要條件;
④命題p:“?x∈(0,$\frac{π}{2}$)”,使sinx+cosx=$\frac{1}{2}$”,命題q:“在△ABC中,若sinA>sinB,則A>B”,那么命題(¬p)∧q為真命題.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.若實數x、y滿足不等式組$\left\{\begin{array}{l}2x+y+2≥0\\ x+y+m≤0\\ y≥0\end{array}\right.$,且z=y-2x的最小值等于-2,則實數m的值等于-1.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.在△ABC中,內角A、B、C的對邊分別為a,b,c,若b,c,a成等比數列,且a=$\frac{1}{2}$b,則cosA=$\frac{5\sqrt{2}}{8}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次“環(huán)保知識競賽”,共有800名學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學生的成績(得分均為整數,滿分為100分)進行統計.請你根據尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問題:
分組頻數頻率
50.5~60.560.08
60.5~70.512      0.16
70.5~80.5150.2              
80.5~90.5240.32
90.5~100.5180.24
合計751
(Ⅰ)填充頻率分布表的空格(將答案直接填在答題卡的表格內);
(Ⅱ)補全頻率分布直方圖;
(Ⅲ)若成績在80.5~90.5分的學生為二等獎,問獲得二等獎的學生約為多少人?

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.某商場為了了解某日旅游鞋的銷售情況,抽取了部分顧客所購鞋的尺寸,將所得數據整理后,畫出頻率分布直方圖如圖所示.已知從左到右前3個小組的頻率之比為1:2:3,第4小組與第5小組的頻率分布如圖所示,第2小組的頻數為10,則第4小組顧客的人數是( 。
A.15B.20C.25D.30

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.等差數列{an}中,若a2+a4+a6=3,則a1+a3+a5+a7=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.已知各項均不為零的數列{an}滿足an+12=anan+2,且32a8-a3=0,記Sn是數列{an}的前n項和,則$\frac{{S}_{6}}{{a}_{1}-{S}_{3}}$的值為( 。
A.-$\frac{21}{8}$B.$\frac{21}{8}$C.-9D.9

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.下列關于圓錐曲線的命題:
①設A,B為兩個定點,P為動點,若|PA|+|PB|=8,則動點P的軌跡為橢圓;
②設A,B為兩個定點,P為動點,若|PA|=10-|PB|,且|AB|=8,則|PA|的最大值為9;
③設A,B為兩個定點,P為動點,若|PA|-|PB|=6,則動點P的軌跡為雙曲線;
④雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{10}$=1與橢圓$\frac{{x}^{2}}{30}$+$\frac{{y}^{2}}{4}$=1有相同的焦點.
其中真命題的序號是②④.

查看答案和解析>>

同步練習冊答案