【題目】在△ABC中,設(shè)邊a,b,c所對(duì)的角分別為A,B,C,且a>c.已知△ABC的面積為 , ,b=3.
(Ⅰ)求a,c的值;
(Ⅱ)求sin(B﹣C)的值.

【答案】解:(Ⅰ)由 ,得sinAcosB﹣cosAsinB+sin(A+B)=

即2sinAcosB= ,∵sinA≠0,∴ .sinB=

由余弦定理得:

…①

又∵sABC= ,∴ac=6…②

由①②解得

∵a>c,∴a=3,c=2

(Ⅱ)由余弦定理得cosC= ,則sinC=

∴sin(B﹣C)=sinBcosC﹣cosBsinC=


【解析】(1)由 ,得sinAcosB﹣cosAsinB+sin(A+B)= ,即.sinB= 由余弦定理得: …①,又sABC= ,∴ac=6…②,由①②解得a,c

(Ⅱ)由余弦定理得cosC= ,則sinC= .即可得sin(B﹣C)=sinBcosC﹣cosBsinC的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,若函數(shù)f(x)有最大值M,則M的取值范圍是(
A.( ,0)
B.(0, ]
C.(0, ]
D.( , ]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}是公差大于0的等差數(shù)列,Sn為數(shù)列{an}的前n項(xiàng)和,已知S3=9,且2a1 , a3﹣1,a4+1構(gòu)成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿(mǎn)足 =2n1(n∈N*),設(shè)Tn是數(shù)列{bn}的前n項(xiàng)和,證明:Tn<6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2lnx+x2+(a﹣1)x﹣a,(a∈R),當(dāng)x≥1時(shí),f(x)≥0恒成立.
(1)求實(shí)數(shù)a的取值范圍;
(2)若正實(shí)數(shù)x1、x2(x1≠x2)滿(mǎn)足f(x1)+f(x2)=0,證明:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,甲、乙兩名籃球運(yùn)動(dòng)員的季后賽10場(chǎng)得分可用莖葉圖表示如圖:
(1)某同學(xué)不小心把莖葉圖中的一個(gè)數(shù)字弄污了,看不清了,在如圖所示的莖葉圖中用m表示,若甲運(yùn)動(dòng)員成績(jī)的中位數(shù)是33,求m的值;
(2)估計(jì)乙運(yùn)動(dòng)員在這次季后賽比賽中得分落在[20,40]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn) (t為參數(shù)),以原點(diǎn)為極點(diǎn),以x正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)
(Ⅰ)寫(xiě)出曲線(xiàn)C1的普通方程,曲線(xiàn)C2的直角坐標(biāo)方程;
(Ⅱ)若M(1,0),且曲線(xiàn)C1與曲線(xiàn)C2交于兩個(gè)不同的點(diǎn)A,B,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠A= ,O為平面內(nèi)一點(diǎn).且| |,M為劣弧 上一動(dòng)點(diǎn),且 .則p+q的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= x2﹣alnx(a∈R)
(1)若函數(shù)f(x)在x=2處的切線(xiàn)方程為y=x+b,求a,b的值;
(2)討論方程f(x)=0解的個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,若將f(x)的圖象向左平移 個(gè)單位后所得函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),則φ=(
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案