精英家教網 > 高中數學 > 題目詳情
平面直角坐標系中,O為坐標原點,已知兩點M(1,-3)、N(5,1),若點C滿足=t+(1-t)(t∈R),點C的軌跡與拋物線:y2=4x交于A、B兩點.
(Ⅰ)求證:;
(Ⅱ)在x軸上是否存在一點P(m,0)(m∈R),使得過P點的直線交拋物線于D、E兩點,并以該弦DE為直徑的圓都過原點.若存在,請求出m的值及圓心的軌跡方程;若不存在,請說明理由.
【答案】分析:(1)欲證兩向量垂直,通過向量的坐標運算,就是證明它們的數量積為0,將直線與拋物線的方程組成方程組,利用設而不求的
方法求解;
(2)對于存在性問題,可設假設存在,本題中將垂直關系合理轉化,找出m的一個相等關系,從而解出了m的值,即說明存在.
解答:解:(Ⅰ)解:由=t+(1-t)(t∈R),知點C的軌跡是M、N兩點所在的直線,
故點C的軌跡方程是:即y=x-4.
由得x2-12x+16=0.
∴x1x2=16,x1+x2=12
∴y1y2=(x1-4)(x2-4)=x1x2-4(x1+x2)+16=-16
∴x1x2+y1y2=0   故
(Ⅱ)解:由題意知:弦所在的直線的斜率不為零.故設弦所在的直線方程為:x=ky+m,
代入 y2=4x 得 y2-4ky-4m=0,∴y1+y2=4k,y1y2=-4m.
若以弦DE為直徑的圓都過原點,則OD⊥OE,∴x1x2+y1y2=0.
=m2-4m,解得m=0 (不合題意,舍去)或 m=4.
∴存在點P(4,0),使得過P點任作拋物線的一條弦,以該弦為直徑的圓都過原點.
設弦AB的中點為M(x,y)  則x=(x1+x2),y=( y1+y2),
x1+x2=ky1+4+ky2+4=k(y1+y2)+8=4k2+8,
∴弦AB的中點M的軌跡方程為:
消去k得:y2=2x-8.
∴圓心的軌跡方程為y2=2x-8.
點評:對于存在判斷型問題,解題的策略一般為先假設存在,然后轉化為“封閉型”問題求解判斷,若不出現(xiàn)矛盾,則肯定存在;若出現(xiàn)矛盾,則否定存在.這是一種最常用也是最基本的方法.本題根據拋物線的定義,結合焦點三角形,引出矛盾,從而問題得解.解圓錐曲線的中點弦問題的一般方法是:聯(lián)立直線和圓錐曲線的方程,借助于一元二次方程的根的判別式、根與系數的關系、中點坐標公式及參數法求解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

平面直角坐標系中,O為坐標原點,已知兩點A(3,1)、B(-1,3),若點C滿足
OC
OA
OB
,其中α、β∈R,且α+β=1,則點C的軌跡方程為(  )
A、3x+2y-11=0
B、(x-1)2+(y-2)2=5
C、2x-y=0
D、x+2y-5=0

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網已知水平地面上有一籃球,在斜平行光線的照射下,其陰影為一橢圓(如圖),在平面直角坐標系中,O為原點,設橢圓的方程為
x2
a2
+
y2
b2
=1
(a>b>0),籃球與地面的接觸點為H,則|OH|=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

在平面直角坐標系中,O(0,0),P(6,8),將向量
OP
按逆時針旋轉
π
4
后,得向量
OQ
則點Q的坐標是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

平面直角坐標系中,O為坐標原點,給定兩點A(1,0)、B(0,-2),點C滿足   
OC
OA
OB
,其中α
、β∈R,且α-2β=1
(1)求點C的軌跡方程;
(2)設點C的軌跡與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
交于兩點M、N,且以MN為直徑的圓過原點,求證:
1
a2
+
1
b2
為定值
;
(3)在(2)的條件下,若橢圓的離心率不大于
2
2
,求橢圓長軸長的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2006•海淀區(qū)二模)平面直角坐標系中,O為坐標原點,已知兩定點A(1,0)、B(0,-1),動點P(x,y)滿足:
OP
=m
OA
+(m-1)
OB
(m∈R)

(1)求點P的軌跡方程;
(2)設點P的軌跡與雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)
交于相異兩點M、N.若以MN為直徑的圓經過原點,且雙曲線C的離心率等于
3
,求雙曲線C的方程.

查看答案和解析>>

同步練習冊答案