半徑為R的球的內(nèi)接圓錐的最大體積為________.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)研究發(fā)現(xiàn):平面內(nèi),半徑為R的圓的內(nèi)接矩形中,以正方形的周長(zhǎng)為最大,最大值為4
2
R
.通過(guò)類(lèi)比,我們可得結(jié)論:在空間,半徑為R的球的內(nèi)接長(zhǎng)方體中,以
 
的表面積為最大,最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由“半徑為R的圓的內(nèi)接矩形中,以正方形的面積為最大,最大值為2R2”,類(lèi)比猜想關(guān)于球的相應(yīng)命題為:
半徑為R的球的內(nèi)接長(zhǎng)方體中以正方體的體積為最大,最大值為
8
3
9
R3
半徑為R的球的內(nèi)接長(zhǎng)方體中以正方體的體積為最大,最大值為
8
3
9
R3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省徐州市六校高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

由“半徑為R的圓的內(nèi)接矩形中,以正方形的面積為最大,最大值為2R2”,類(lèi)比猜想關(guān)于球的相應(yīng)命題為:   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省宜昌市長(zhǎng)陽(yáng)一中高二(下)第一次月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

由“半徑為R的圓的內(nèi)接矩形中,以正方形的面積為最大,最大值為2R2”,類(lèi)比猜想關(guān)于球的相應(yīng)命題為:   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省連云港市東海高級(jí)中學(xué)高考數(shù)學(xué)考前猜題試卷(4)(解析版) 題型:解答題

經(jīng)研究發(fā)現(xiàn):平面內(nèi),半徑為R的圓的內(nèi)接矩形中,以正方形的周長(zhǎng)為最大,最大值為.通過(guò)類(lèi)比,我們可得結(jié)論:在空間,半徑為R的球的內(nèi)接長(zhǎng)方體中,以    的表面積為最大,最大值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案