已知曲線
(1)試求曲線在點(diǎn)處的切線方程;
(2)試求與直線平行的曲線C的切線方程.

(1) ;(2)

解析試題分析:(1)先求出的值,再求函數(shù)的導(dǎo)函數(shù),求得的值即為點(diǎn)斜率,代入點(diǎn)斜式方程,再化為一般式方程即可;(2)設(shè)切點(diǎn)為,利用導(dǎo)數(shù)的幾何意義和相互平行的直線的斜率相等,即可得所求切線的斜率,再求出切點(diǎn)的坐標(biāo),代入點(diǎn)斜式方程,再化為一般式方程即可.
(1) ∵,∴,求導(dǎo)數(shù)得:
∴切線的斜率為,
∴所求切線方程為,即:
(2)設(shè)與直線平行的切線的切點(diǎn)為,
則切線的斜率為
又∵所求切線與直線平行,∴,
解得:,代入曲線方程得:切點(diǎn)為,
∴所求切線方程為:
即:
考點(diǎn):1、導(dǎo)數(shù)的計(jì)算;2、導(dǎo)數(shù)的幾何意義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知的導(dǎo)函數(shù)的簡圖,它與軸的交點(diǎn)是(0,0)和(1,0),


(1)求的解析式及的極大值.
(2)若在區(qū)間(m>0)上恒有≤x成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)滿足(其中在點(diǎn)處的導(dǎo)數(shù),為常數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間
(2)設(shè)函數(shù),若函數(shù)上單調(diào),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是定義在上的奇函數(shù),當(dāng)時(shí), (其中e是自然界對(duì)數(shù)的底,)
(1)求的解析式;
(2)設(shè),求證:當(dāng)時(shí),且,恒成立;
(3)是否存在實(shí)數(shù)a,使得當(dāng)時(shí),的最小值是3 ?如果存在,求出實(shí)數(shù)a的值;如果不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若,求函數(shù)的極小值;
(2)設(shè)函數(shù),試問:在定義域內(nèi)是否存在三個(gè)不同的自變量使得的值相等,若存在,請(qǐng)求出的范圍,若不存在,請(qǐng)說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)設(shè)函數(shù),當(dāng)時(shí),討論的單調(diào)性;
(2)若函數(shù)處取得極小值,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)求的單調(diào)區(qū)間和極值;
(2)若關(guān)于的方程有3個(gè)不同實(shí)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),滿足,且為自然對(duì)數(shù)的底數(shù).
(1)已知,求處的切線方程;
(2)若存在,使得成立,求的取值范圍;
(3)設(shè)函數(shù),為坐標(biāo)原點(diǎn),若對(duì)于時(shí)的圖象上的任一點(diǎn),在曲線上總存在一點(diǎn),使得,且的中點(diǎn)在軸上,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分15分)已知函數(shù)
(Ⅰ)若曲線在點(diǎn)處的切線與直線平行,求的值;
(Ⅱ)記,,且.求函數(shù)的單調(diào)遞增區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案