已知等差數(shù)列{an}滿足a1=1,d=1,數(shù)列{bn}滿足b1=a1
bn+1
bn
=
a4
a2

求(1)an的通項(xiàng)公式 
(2)bn的前10項(xiàng)和.
考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)直接由等差數(shù)列的通項(xiàng)公式得答案;
(2)求出a2,a4,得到等比數(shù)列的公比,由等比數(shù)列的前n項(xiàng)和得答案.
解答: 解:(1)在等差數(shù)列{an}中,a1=1,d=1,則an=1+(n-1)×1=n;
(2)a2=a1+d=1+1=2,a4=a1+3d=1+3×1=4,
bn+1
bn
=
a4
a2
=
4
2
=2
,
又b1=a1=1,
∴數(shù)列{bn}的前10項(xiàng)和為S10=
1×(1-210)
1-2
=210-1
點(diǎn)評(píng):本題考查了數(shù)列遞推式,考查了等比數(shù)列的前n項(xiàng)和,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ln(1+x)-ln(1-x),有如下結(jié)論:
①?x∈(-1,1)有f(-x)=f(x)
②?x∈(-1,1),有f(-x)=-f(x)
③?x1,x2∈(-1,1),有
f(x1)-f(x2)
x1-x2
>0
④?x1,x2∈(0,1),有f(
x1+x2
2
)≤
f(x1)+f(x2)
2

上述結(jié)論中正確的個(gè)數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面區(qū)域
x≥0
y≥0
x+y≤
2
內(nèi)隨機(jī)取一點(diǎn),則所取的點(diǎn)恰好落在圓x2+y2=1內(nèi)的概率是( 。
A、
π
2
B、
π
4
C、
π
8
D、
π
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)fn(x)=1+
1
2
+(
1
2
)2+…+(
1
2
)n+
n2
n2+2015
(x+1)
,其中n∈N*,當(dāng)n=1,2,3,…時(shí),fn(x)的零點(diǎn)依次記作x1,x2,x3,…,則
lim
n→∞
xn
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的非負(fù)半軸重合.若曲線C1的方程為ρsin(θ-
π
6
)+2
3
=0,曲線C2的參數(shù)方程為
x=cosθ
y=sinθ

(Ⅰ)將C1的方程化為直角坐標(biāo)方程;
(Ⅱ)若點(diǎn)Q為C2上的動(dòng)點(diǎn),P為C1上的動(dòng)點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=|2sinx-t|(t>0),若函數(shù)的最大值為a,最小值為b,且a<2b,則t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a=2,b=4,C=60°.
(Ⅰ)求△ABC的面積;
(Ⅱ)求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3x-3-x
3x+3-x

(Ⅰ)判斷f(x)的奇偶性;
(Ⅱ)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,真命題是( 。
A、?x0∈R,e x0≤0
B、?x∈R,2x>x2
C、x+
1
x
≥2
D、a2+b2
(a+b)2
2
,a,b∈R

查看答案和解析>>

同步練習(xí)冊(cè)答案